

SGM4554 1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

GENERAL DESCRIPTION

This 1-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2V to 5.0V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5V voltage nodes. V_{CCA} should not exceed V_{CCB} .

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. OE has an internal pull-down current source, as long as V_{CCA} is powered.

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4554 is available in Green UTDFN-1.45×1-6L and SC70-6 packages. It operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.

TYPICAL APPLICATION CIRCUIT

FEATURES

- 1.2V to 5.0V on A Port and 1.65V to 5.5V on B Port $(V_{CCA} \leq V_{CCB})$
- V_{cc} Isolation: If Either V_{cc} is at GND, All Outputs are in the High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption
- Push-Pull Output
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- -40°C to +85°C Operating Temperature Range
- Available in Green UTDFN-1.45×1-6L and SC70-6 Packages

APPLICATIONS

UART GPIO

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM4554	SC70-6	-40°C to +85°C	SGM4554YC6G/TR	SM1XX	Tape and Reel, 3000
561414554	UTDFN-1.45×1-6L	-40°C to +85°C	SGM4554YUDL6G/TR	N7X	Tape and Reel, 5000

NOTE: **X** = Date Code, **XX** = Date Code.

MARKING INFORMATION

<u>SM1 X X</u>

Date code - Month ("A" = Jan. "B" = Feb. … "L" = Dec.) Date code - Year ("A" = 2010, "B" = 2011 …) Chip I.D.

For example: SM1DB (2013, February)

ABSOLUTE MAXIMUM RATINGS

$V_{CCA,}$ Supply Voltage Range0.3V to 6V $V_{CCB,}$ Supply Voltage Range0.3V to 6V $V_{I,}$ Input Voltage Range $^{(2)}$ 0.3V to 6V $V_{O},$ Voltage Range Applied to Any Output in the High-Impedance or Power-Off State $^{(2)}$
A Port0.3V to 6V
B Port0.3V to 6V
$V_{\text{O}},$ Voltage Range Applied to Any Output in the High or Low State $^{(2)(3)}$
A Port0.3V to V _{CCA} + 0.3V
B Port0.3V to V _{CCB} + 0.3V
I _{IK} , Input Clamp Current (V _I < 0)50mA
I_{OK} , Output Clamp Current (V _O < 0)50mA
I ₀ , Continuous Output Current ±50mA
Continuous Current through V _{CCA} , V _{CCB} , or GND±100mA
Operating Temperature Range40°C to +85°C
Junction Temperature
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10sec)260°C
ESD Susceptibility
HBM
MM400V

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

3. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

Р	IN		
SC70-6	UTDFN- 1.45×1-6L	NAME	FUNCTION
1	6	V_{CCA}	A Port Supply Voltage. 1.2V \leq V _{CCA} \leq 5.0V and V _{CCA} \leq V _{CCB} .
2	5	GND	Ground.
3	4	А	Input/Output A. Referenced to V _{CCA} .
4	3	В	Input/Output B. Referenced to V _{CCB} .
5	2	OE	3-State Output Enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA}
6	1	V _{CCB}	B Port Supply Voltage. $1.65V \le V_{CCB} \le 5.5V$.

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAME	TER	C	TEMP	MIN	TYP	MAX	UNITS		
RECOMMENDED	OPERATING CO	NDITIONS (1)							
V _{CCA}					1.2		5.0	V	
Supply Voltage	V _{CCB}				1.65		5.5	V	
High-Level	Data Inputs	V _{CCA} = 1.2V to 5.	OV, V _{CCB} = 1.65V to 5.5V		V _{CCI} × 0.85		V _{CCI}	v	
Input Voltage (V _{IH})	OE Input	V _{CCA} = 1.2V to 5.	OV, V _{CCB} = 1.65V to 5.5V		V _{CCA} × 0.85		5.5	v	
Low-Level	Data Inputs	$V_{\rm CCA}$ = 1.2V to 5.0V, $V_{\rm CCB}$ = 1.65V to 5.5V			0		V _{CCI} × 0.2	V	
Input Voltage (V _{IL})	OE Input	V _{CCA} = 1.2V to 5.	0V, V _{CCB} = 1.65V to 5.5V		0		V _{CCA} × 0.2	V	
Input Transition			0V, V _{CCB} = 1.65V to 5.5V				40	n ∩∆/	
Rise or Fall Rate $(\Delta t / \Delta V)$	B Port Input	V _{CCA} = 1.2V to 5.	0V, V _{CCB} = 1.65V to 5.5V				40	ns/V	
ELECTRICAL CHA	RACTERISTICS	(1) (2)							
A Port High Level C	utput Voltage	I _{OH} = -20μA	V _{CCA} = 1.2V	+25°C		1.05			
(V _{OHA})		i _{oн} – -20µА	V _{CCA} = 1.4V to 5.0V	Full	V _{CCA} - 0.4				
A Port Low Level O	utput Voltage	I _{OL} = 20µA	V _{CCA} = 1.2V	+25°C		0.1			
(V _{OLA})		ι _{oL} = 20μΑ	V _{CCA} = 1.4V to 5.0V	Full			0.4	V	
B Port High Level Output Voltage (V_{OHB})		I _{OH} = -20µА	V _{CCB} = 1.65V to 5.5V	Full	V _{CCB} - 0.4				
B Port Low Level Output Voltage (V _{OLB})		I _{OL} = 20μA	I _{OL} = 20μA V _{CCB} = 1.65V to 5.5V				0.4		
Input Leakage	OE	$V_{aa} = 1.2 V to 5$	$11/1 = 1.65 \times 10.55 \times 10.000$	+25°C			±1		
Current (I _I)	θL	V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.65V to 5.5V		Full			±1.5		
	A Port	V_1 or $V_0 = 0V$ to 5.0V,		+25°C			±0.5		
Power Off Leakage Current	ATOR	$V_{CCA} = 0V, V_{CCB} =$	= 0V to 5.5V	Full			±1		
(I _{OFF})	B Port	V_1 or $V_0 = 0V$ to 5.5V,		+25°C			±0.5	μA	
	BTOIL	$V_{CCA} = 0V$ to 5.0	/, V _{CCB} = 0V	Full			±1		
3-State Output	A or B Port	OE = GND, V _{CCA}		+25°C			±0.5		
Leakage (I _{OZ})	AGETOR	$V_{\rm CCB}$ = 1.65V to 5	5.5V	Full			±1		
			$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1			
Quiescent Supply C	current (I _{CCA})	$V_1 = V_{CC1}$ or GND_1 $I_0 = 0$	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V				10	μA	
			$V_{CCA} = 5.0V, V_{CCB} = 0V$	Full			10		
			$V_{CCA} = 0V, V_{CCB} = 5.5V$				-1		
			V _{CCA} = 1.2V, V _{CCB} = 1.65V to 5.5V	+25°C		1			
Quiescent Supply C	current (I _{CCB})	$V_1 = V_{CC1}$ or GND_1 $I_0 = 0$	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V				10	μA	
			V_{CCA} = 5.0V, V_{CCB} = 0V	Full			-1	1	
			$V_{CCA} = 0V, V_{CCB} = 5.5V$	1			10	1	

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	CO	NDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Quiescent Supply Current	$V_1 = V_{CC1}$ or GND,	V _{CCA} = 1.2V, V _{CCB} = 1.65V to 5.5V	+25°C		1			
(I _{CCA} + I _{CCB})	I _O = 0	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			15	μA	
Quiescent Supply Current (I)	$V_1 = V_{CCI}$ or GND, $I_0 = 0$,	V _{CCA} = 1.2V, V _{CCB} = 1.65V to 5.5V	+25°C		0.1			
Quiescent Supply Current (I _{CCZA})	OE = GND	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			10	μA	
Quiescent Supply Current (I _{CCZB})	$V_1 = V_{CC1}$ or GND, $I_0 = 0$,	V _{CCA} = 1.2V, V _{CCB} = 1.65V to 5.5V	+25°C		0.1			
Quiescent Supply Current (ICCZB)	OE = GND	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			10	- μΑ	
OE Input Capacitance (C ₁)	V _{CCA} = 1.2V to 5.0	V, V _{CCB} = 1.65V to 5.5V	+25°C		4		pF	
Input/Output Capacitance A Port (C_{10})	-1.2 / to 5.0				4.5		- pF	
Input/Output Capacitance B Port (C_{IO})	V _{CCA} – 1.2V (0 5.0	V, V _{CCB} = 1.65V to 5.5V	+25°C -		4.5		ρ Γ	

NOTES:

1. V_{CCI} is the supply voltage associated with the input port.

2. V_{CCO} is the supply voltage associated with the output port.

TIMING REQUIREMENTS

		V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
		ТҮР	ТҮР	ТҮР	ТҮР	UNITS
(T _A = +25°C, V _{CCA} = 1.	2V, unless otherw	ise noted.)	•	· · · · · ·		
Data Rate		20	20	20	20	Mbps
Pulse Duration (t _w)	Data Inputs	50	50	50	50	ns
(T _A = +25°C, V _{CCA} = 1.	5V, unless otherw	ise noted.)	•	· · · · · ·		
Data Rate		40	40	40	40	Mbps
Pulse Duration (t_w)	Data Inputs	25	25	25	25	ns
(T _A = +25°C, V _{CCA} = 1	8V, unless otherw	ise noted.)				
Data Rate		60	60	60	60	Mbps
Pulse Duration (t _w)	Data Inputs	17	17	17	17	ns
(T _A = +25°C, V _{CCA} = 2	.5V, unless otherw	ise noted.)				
Data Rate			100	100	100	Mbps
Pulse Duration (t_w)	Data Inputs		10	10	10	ns
(T _A = +25°C, V _{CCA} = 3	.3V, unless otherw	ise noted.)				
Data Rate				100	100	Mbps
Pulse Duration (t _w)	Data Inputs			10	10	ns
(T _A = +25°C, V _{CCA} = 5	V, unless otherwis	e noted.)				
Data Rate					100	Mbps
Pulse Duration (tw)	Data Inputs				10	ns

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.2V, unless otherwise noted.)

DAD	AMETER	FROM	то	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS
FAR/		(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	ТҮР	UNITS
	t _{PLH}	A	В	22.1	20.7	19.9	19.4	
+	t _{PHL}	A	D	31.1	29.3	29.9	31.5	ns
t _{PD}	t _{PLH}	В	А	29.8	29.7	25.1	30.6	115
	t _{PHL}	В	A	22.8	19.9	20.1	18.2	
	t _{PZH}		А	66.9	67.3	66.7	65.8	
+	t _{PZL}	OE -	~	48.2	47.6	47.2	46.2	20
t _{EN}	t _{PZH} OE		В	32.6	28.8	28.5	29.6	ns
	t _{PZL}		D	62.7	60.5	61.5	63.7	
	t _{PHZ}			1161	1170	1165	1168	
+	t _{PLZ}	OE	A	521	524	528	529	20
t _{DIS}	t _{PHZ}	UE	P	1135	1166	1180	1186	ns
	t _{PLZ}	-	В	532	567	578	563	
	t _{rA}	A Port F	Rise Time	21.9	21.6	20.0	18.8	ns
	t _{fA}	A Port	Fall Time	5.9	6.3	5.2	3.9	ns
	t _{rB}		Rise Time	3.9	2.3	1.9	1.6	ns
	t _{fB}		Fall Time	2.3	1.9	1.7	1.6	ns
Dat	a Rate			20	20	20	20	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.5V, unless otherwise noted.)

		FROM	то	V _{ссв} = 1.8V	V _{CCB} = 2.5V	$V_{CCB} = 3.3V$	V _{CCB} = 5V	
PARAMETER		(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	TYP	UNITS
	t _{PLH}	A	В	14.8	14.2	13.2	12.5	
+	t _{PHL}		В	15.1	12.3	11.7	12.9	ns
t _{PD}	t _{PLH}	в	А	13.0	13.6	11.5	10.8	115
	t _{PHL}	Б	A	11.9	9.9	9.5	8.3	
	t _{PZH}		А	28.9	29.0	28.8	28.6	
	t _{PZL}	OE	A	27.6	23.3	22.2	21.7	ns
t _{EN}	t _{PZH}	UE	Р	22.8	18.4	17.4	17.1	
	t _{PZL}		В	31.2	26.8	26.5	26.6	
	t _{PHZ}		А	1141	1132	1139	1138	- ns
+	t _{PLZ}	OE	A	536	531	535	534	
t _{DIS}	t _{PHZ}	UE	P	1112	1151	1165	1173	
	t _{PLZ}		В	530	558	568	553	
	t _{rA}	A Port F	Rise Time	7.7	7.9	8.4	8.2	ns
	t _{fA}	A Port	Fall Time	3.1	2.9	3.0	2.4	ns
	t _{rB}	B Port F	Rise Time	4.0	2.3	1.8	1.5	ns
	t _{fB}	B Port	Fall Time	2.3	2.0	1.8	1.6	ns
Da	ta Rate			40	40	40	40	Mbps

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

SWITCHING CHARACTERISTICS

(T _A = +25°C	$V_{\rm CCA} = 1.8V,$	unless otherwise noted.)
-------------------------	-----------------------	--------------------------

DAD		FROM	то	V _{ссв} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
PARAMETER		(INPUT)	(OUTPUT)	ТҮР	TYP	ТҮР	ТҮР	UNITS
	t _{PLH}	A	В	11.3	12.3	11.4	10.6	
4	t _{PHL}	A	В	11.0	8.8	8.0	8.4	
t _{PD}	t _{PLH}	в	A	8.6	10.6	9.1	7.4	ns
	t _{PHL}	В	A	9.2	6.8	8.0	5.7	
	t _{PZH}	OE -	А	19.0	19.0	19.0	19.1	
+	t _{PZL}		A	21.7	17.9	16.5	15.8	
t _{en}	t _{PZH} OE		В	20.1	15.6	14.6	14.0	ns
	t _{PZL}		В	22.6	19.2	18.7	18.5	
	t _{PHZ}		А	1170	1169	1170	1170	
•	t _{PLZ}	OE	541 540	540	541	542		
t _{DIS}	t _{PHZ}	UE	Р	1099	1142	1157	1166	ns
	t _{PLZ}	-	В	533	560	566	554	
	t _{rA}	A Port F	Rise Time	4.8	4.6	4.4	3.9	ns
	t _{fA}	A Port I	Fall Time	2.3	2.6	2.5	2.3	ns
	t _{rB}	B Port F	Rise Time	4.3	2.3	1.8	1.6	ns
	t _{fB}	B Port I	Fall Time	2.3	2.1	1.8	2.2	ns
Dat	ta Rate			60	60	60	60	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

		FROM	то	V _{CCB} = 2.5V	V _{CCB} = 3.3V	$V_{CCB} = 5V$	
PARAMETER		(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	
	t _{PLH}	А	В	9.4	7.1	5.2	
t _{PD}	t _{PHL}	A	D	6.1	5.7	5.1	ns
	t _{PLH}	в	А	7.8	5.5	4.6	115
	t _{PHL}	В	A	5.7	5.2	3.6	
	t _{PZH}	- OE -	А	13.0	12.7	13.0	
t _{EN}	t _{PZL}		A	14.4	13.0	12.2	
	t _{PZH}		ФЕ	В	13.7	12.5	12.1
	t _{PZL}		В	14.5	14.1	13.4	
	t _{PHZ}		А	1188	1188	1189	
+	t _{PLZ}		A	571	571	573	
t _{DIS}	t _{PHZ}	UE	В	1127	1151	1158	— ns
	t _{PLZ}		D	566	570	553	
	t _{rA}	A Port F	Rise Time	2.6	3.2	3.7	ns
t _{fA}		A Port I	Fall Time	2.4	2.6	2.7	ns
t _{rB}		B Port F	Rise Time	2.2	2.2	2.3	ns
	t _{fB}	B Port Fall Time		1.8	2.2	1.8	ns
Da	ta Rate			100	100	100	Mbps

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

SWITCHING CHARACTERISTICS

(T _A = +25°C	$V_{CCA} = 3.3V,$	unless otherwise noted.)
-------------------------	-------------------	--------------------------

PARAMETER		FROM	то	V _{CCB} = 3.3V	$V_{CCB} = 5V$		
		(INPUT)	(OUTPUT)	ТҮР	ТҮР		
	t _{PLH}	- Α	В	6.2	4.1		
+	t _{PHL}	A		5.0	4.0	20	
t _{PD}	t _{PLH}	В	A	5.0	3.7	ns	
	t _{PHL}	В		4.6	3.0		
	t _{PZH}		A	11.5	11.0		
1	t _{PZL}	OE		12.3	11.3		
t _{en}	t _{PZH}		В	11.8	11.5	ns	
	t _{PZL}			12.4	11.7		
	t _{PHZ}		A	1196	1190		
	t _{PLZ}			583	584		
t _{DIS}	t _{PHZ}	OE		1139	1150	ns	
	t _{PLZ}		В	578	557	1	
t	t _{rA}	A Port F	A Port Rise Time		2.8	ns	
t _{fA}		A Port Fall Time		4.4	2.3	ns	
t _{rB}		B Port Rise Time		1.9	1.7	ns	
t _{fB}		B Port I	Fall Time	2.0	2.1	ns	
Data	Rate			100	100	Mbps	

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 5V, unless otherwise noted.)

PARAMETER		FROM	то	V _{CCB} = 5V		
PARA		(INPUT)	(OUTPUT)	ТҮР		
	t _{PLH}	A	В	3.5		
+	t _{PHL}		D	2.9		
t _{PD}	t _{PLH}	в	Α	3.0	ns	
	t _{PHL}	В	A	2.6		
	t _{PZH}		•	11.5		
1	t _{PZL}	OE	Α	11.7		
t _{EN}	t _{PZH}		В	11.3	ns	
	t _{PZL}		В	10.7		
	t _{PHZ}	OE	t _{PHZ}	Α	1196	
+	t _{PLZ}		A	578		
t _{DIS}	t _{PHZ}		В	1146	ns	
	t _{PLZ}		В	559		
	t _{rA}	A Port R	ise Time	3.4	ns	
	t _{fA}	A Port F	all Time	3.1	ns	
	t _{rB}	B Port R	ise Time	1.7	ns	
	t _{fB}	B Port F	all Time	1.7	ns	
Data	a Rate			100	Mbps	

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

OPERATING CHARACTERISTICS

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER			V _{CCA}									
		TEST CONDITIONS	1.2V	1.2V	1.5V	1.8V	2.5V	2.5V	3.3V	3.3V	5V	
			V _{CCB}									UNITS
			5V	1.8V	1.8V	1.8V	2.5V	5V	3.3V	5V	5V	
			TYP	TYP	ТҮР	ТҮР	TYP	TYP	TYP	TYP	ТҮР	
C	A Port Input, B Port Output	$C_{L} = 0,$ f = 10MHz, t_r = t_f = 1ns, OE = V _{CCA} (Outputs Enabled)	61	56	13	6	7	7	8	8	9	pF
C _{PDA}	B Port Input, A Port Output		9	9	9	9	9	9	9	9	10	pF
C _{PDB}	A Port Input, B Port Output		10	9	9	9	9	9	9	9	9	pF
CPDB	B Port Input, A Port Output		20	92	7	7	7	9	8	9	10	pF
C _{PDA}	A Port Input, B Port Output		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
CPDA	B Port Input, A Port Output	$C_L = 0,$ f = 10MHz, $t_r = t_f = 1ns,$ OE = GND (Outputs Disabled)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
C _{PDB}	A Port Input, B Port Output		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
	B Port Input, A Port Output		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

SGM4554

APPLICATION INFORMATION

Applications

The SGM4554 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

Architecture

The SGM4554 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a DC state, the output drivers of the SGM4554 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction.

The output one-shots detect rising or falling edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one-shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 140 Ω at V_{CCO} = 1.2V to 1.8V, 50 Ω at V_{CCO} = 1.8V to 3.3V, and 40 Ω at V_{CCO} = 3.3V to 5V.

Figure 1. Architecture of an SGM4554 I/O Cell

Input Driver Requirements

Typical I_{IN} vs. V_{IN} characteristics of the SGM4554 are shown in Figure 2. For proper operation, the device driving the data I/Os of the SGM4554 must have drive strength of at least ±2mA.

SG Micro Corp www.sg-micro.com

A. $V_{\rm T}$ is the input threshold voltage of the SGM4554 (typically $V_{\rm CCl}/2$). B. $V_{\rm D}$ is the supply voltage of the external driver.

Figure 2. Typical I_{IN} vs. V_{IN} Curve

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} > V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The SGM4554 has circuitry that disables all output ports when either V_{CC} is switched off ($V_{CCA/B} = 0V$).

Enable and Disable

The SGM4554 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. OE has an internal pull-down current source, as long as V_{CCA} is powered. The disable time indicates the delay between when OE goes low and when the outputs are actually disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-Up or Pull-Down Resistors on I/O Lines

The SGM4554 is designed to drive capacitive loads of up to 70pF. The output drivers of the SGM4554 have low DC drive strength. If pull-up or pull-down resistors are connected externally to the data I/Os, their values must be kept higher than $50k\Omega$ to ensure that they do not contend with the output drivers of the SGM4554.

For the same reason, the SGM4554 should not be used in applications such as I^2C or 1-wire where an open-drain driver is connected on the bidirectional data I/O. For these applications, please use the open-drain output SGM4552 which is pin-compatible with the SGM4554.

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PARAMETER MEASUREMENT INFORMATION

NOTES:

- 1. C_L includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z₀ = 50 Ω , dv/dt \geq 1V/ns.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{DIS} .
- 6. t_{PZL} and t_{PZH} are the same as $t_{\text{EN}}.$
- 7. t_{PLH} and t_{PHL} are the same as t_{PD} .
- 8. V_{CCI} is the V_{CC} associated with the input port.
- 9. V_{CCO} is the V_{CC} associated with the output port.
- 10. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuits and Voltage Waveforms

SG Micro Corp www.sg-micro.com

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PACKAGE OUTLINE DIMENSIONS

SC70-6

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions imeters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.150 0.350		0.014		
С	0.080	0.150	0.003	0.006		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.65 TYP		0.026 TYP			
e1	1.300	BSC	0.051 BSC			
L	0.525	REF	0.021 REF			
L1	0.260	0.460	0.010	0.018		
θ	0°	8°	0°	8°		

PACKAGE OUTLINE DIMENSIONS

UTDFN-1.45×1-6L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.450	0.550	0.018	0.022		
A1	0.000	0.050	0.000	0.002		
A2	0.150) REF	0.006 REF			
D	1.374	1.526	0.054	0.060		
E	0.924	1.076	0.036	0.042		
b	0.180	0.300	0.007	0.012		
е	0.500) TYP	0.020) TYP		
L	0.274	0.426	0.011	0.017		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-6	7″	9.5	2.4	2.5	1.2	4.0	4.0	2.0	8.0	Q3
UTDFN-1.45×1-6L	7″	9.5	1.15	1.6	0.75	4.00	4.00	2.00	8.00	Q1

1-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18

