$SGM2566A/SGM2566B \\ 6A, 17m\Omega \ On-Resistance \ Load \ Switches$

GENERAL DESCRIPTION

The SGM2566A and SGM2566B are single channel load switches that provide configurable rise time to minimize inrush current. The load switch contains an N-MOSFET that can operate over an input voltage range of 0.8V to 5.3V ($\leq V_{BIAS}$) and can support a maximum continuous current of 6A. Each of switches is controlled by an on and off input (EN/nFAULT), which is capable of interfacing directly with low-voltage control signals. In the SGM2566A, a 265 Ω on-chip load resistor is added for quick output discharge when switch is turned off.

The SGM2566A and SGM2566B are available in a Green TDFN-2×2-8L package. They are rated over the -40 $^{\circ}$ C to +105 $^{\circ}$ C temperature range.

FEATURES

- Input Voltage Range: 0.8V to 5.3V
- Ultra-Low On-Resistance:

 R_{DSON} = 17m Ω at V_{IN} = 3.3V (V_{BIAS} = 5V)

- 6A Maximum Continuous Switch Current
- Low Quiescent Current: 16µA (V_{BIAS} = 5V)

 $10\mu A (V_{BIAS} = 2.5V)$

- Reverse Current Blocking Support
- Built-In Thermal Shutdown
- Short-Circuit Protection
- Soft-Start Function and Configurable Rise Time
- Enable Input or Alert Output (EN/nFAULT Pin)
- Low Control Input Threshold Enables Use of 1.2V, 1.8V, 2.5V and 3.3V Logic
- SGM2566A: Quick Output Discharge
- -40°C to +105°C Operating Temperature Range
- Available in a Green TDFN-2×2-8L Package

APPLICATIONS

Ultrabook Notebook and Netbook Tablet PC

TYPICAL APPLICATION CIRCUIT

Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2566A	TDFN-2×2-8L	-40°C to +105°C	SGM2566AGTDE8G/TR	GP7 XXXX	Tape and Reel, 3000
SGM2566B	TDFN-2×2-8L	-40°C to +105°C	SGM2566BGTDE8G/TR	GP8 XXXX	Tape and Reel, 3000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Input Voltage, V _{IN} 0.3V to 6V
Output Voltage, V_{OUT} 0.3V to 6V
Bias Voltage, V _{BIAS} 0.3V to 6V
EN/nFAULT Voltage, V _{EN/nFAULT} 0.3V to 6V
EN/nFAULT Sink Current25mA
SS Pin Voltage < V _{BIAS}
Maximum Continuous Switch Current, I _{MAX}
Package Thermal Resistance
TDFN-2×2-8L, θ _{JA}
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
CDM

RECOMMENDED OPERATING CONDITIONS

Input Voltage, V _{IN}	.0.8V to 5.3V (≤ V _{BIAS} - 30mV)
Bias Voltage, V _{BIAS}	2.5V to 5.5V
EN/nFAULT Voltage, V _{EN/nFAUL}	T0V to 5.5V
Output Voltage, V _{OUT}	
Input Capacitor, CIN	> 1μF
Operating Junction Temperatu	re Range, T _J
	40°C to +125°C
Operating Ambient Temperatur	e Range, T _A
	40°C to +105°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	I/O	DESCRIPTION
1, 2	VIN	I	Switch Input. Input bypass capacitor recommended for minimizing V_{IN} dip. Pin 1 and pin 2 should be tied together.
3	EN/nFAULT	I/O	Enable Input or Alert Output ($V_{EN/nFAULT} \leq V_{BIAS}$). Asserting EN/nFAULT pin high enables the device. When any of over-temperature protection or short-circuit protection occurs, the device sinks current from EN/nFAULT, pulling the pin down to alert the host (pin as output port).
4	VBIAS	Ι	Bias Voltage. Power supply to the device. Recommended voltage range for this pin is 2.5V to 5.5V.
5	GND	G	Device Ground.
6	SS	0	Switch Slew Rate Control. Can be left floating.
7, 8	VOUT	0	Switch Output. Pin 7 and pin 8 should be tied together.
Exposed Pad	GND	G	Ground. Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND.

NOTE: I: Input, O: Output, I/O: Input or Output, G: Ground.

ELECTRICAL CHARACTERISTICS

(V_{BIAS} = 5V, T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
Power Supplies and Currents		•						
Bias Voltage Range	V _{BIAS}			2.5		5.5	V	
Input Voltage Range	V _{IN}			0.8		5.3	V	
VBIAS Quiescent Supply Current	$I_{Q_{BIAS}}$	$I_{OUT} = 0mA, V_{IN} = T_J = -40^{\circ}C$ to +10	: V _{EN/nFAULT} = V _{BIAS} = 5V, D5°C		16	27	μA	
VBIAS Shutdown Supply Current	I _{SD_BIAS}	V _{EN/nFAULT} = GND	, T _J = -40°C to +105°C		0.003	1.4	μA	
			V_{IN} = 5V, T_{J} = -40°C to +105°C		0.011	2.6		
			V_{IN} = 3.3V, T_{J} = -40°C to +105°C		0.008	2.2		
VIN Shutdown Supply Current			V_{IN} = 1.8V, T_{J} = -40°C to +105°C		0.003	2		
VIN Shutdown Supply Current	I _{SD_IN}	$V_{EN/nFAULT} = GND$	V_{IN} = 1.5V, T_{J} = -40°C to +105°C		0.003	2	μA	
			V_{IN} = 1.2V, T_J = -40°C to +105°C		0.002	2		
			$V_{IN} = 0.8V, T_J = -40^{\circ}C \text{ to } +105^{\circ}C$		0.001	2		
Reverse Leakage Current	I _{REV}	$V_{IN} = V_{EN/nFAULT} =$	V _{BIAS} = 0V, V _{OUT} = 5V		0.5		μA	
Logic Level Inputs		•			•			
EN/nFAULT Input Current	I _{EN}	$V_{EN/nFAULT} = 5.5V,$	$T_{J} = -40^{\circ}C$ to $+105^{\circ}C$		0.003	1	μA	
EN/nFAULT Input Low Voltage	VIL	$T_{\rm J} = -40^{\circ}C$ to +10	05°C			0.4	V	
EN/nFAULT Input High Voltage	V _{IH}	T _J = -40°C to +105°C		1.05			V	
Resistance Characteristics		•						
			V _{IN} = 5V, T _J = +25°C		17	23		
			$V_{IN} = 5V, T_J = -40^{\circ}C \text{ to } +85^{\circ}C$			29	mΩ	
			$V_{IN} = 5V, T_J = -40^{\circ}C \text{ to } +105^{\circ}C$			30	2 3 mΩ 2	
			V _{IN} = 3.3V, T _J = +25°C		17	22		
			V_{IN} = 3.3V, T_{J} = -40°C to +85°C			28		
			V_{IN} = 3.3V, T_{J} = -40°C to +105°C			29		
			V _{IN} = 1.8V, T _J = +25°C		17	22		
			V_{IN} = 1.8V, T_{J} = -40°C to +85°C			28		
	_	I _{OUT} = -0.2A,	V_{IN} = 1.8V, T_{J} = -40°C to +105°C			29	-	
On-State Switch Resistance	R _{DSON}	$V_{BIAS} = 5V$	V _{IN} = 1.5V, T _J = +25°C		17	22		
			V_{IN} = 1.5V, T_{J} = -40°C to +85°C			28	mΩ	
			V_{IN} = 1.5V, T_{J} = -40°C to +105°C			29		
			V _{IN} = 1.2V, T _J = +25°C		17	22		
			V_{IN} = 1.2V, T_{J} = -40°C to +85°C			28	mΩ	
			V_{IN} = 1.2V, T_{J} = -40°C to +105°C			29		
			V _{IN} = 0.8V, T _J = +25°C		17	22		
			$V_{IN} = 0.8V, T_J = -40^{\circ}C$ to +85°C			28	mΩ	
			V _{IN} = 0.8V, T _J = -40°C to +105°C			29	1	
Quick Discharge Resistor (SGM2566A	Only)		1		I			
Output Shutdown Discharge Resistance	R _{DIS}	V _{IN} = 5V, V _{EN/nFAU}	_{LT} = 0V, T _J = -40°C to +105°C		265	360	Ω	
Thermal Shutdown		1			I			
Thermal Shutdown Temperature		T _J increasing			160		°C	
Thermal Shutdown Hysteresis		1			20		°C	

ELECTRICAL CHARACTERISTICS (continued)

(V_{BIAS} = 2.5V, T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
Power Supplies and Currents								
VBIAS Quiescent Supply Current	$I_{Q_{BIAS}}$	$I_{OUT} = 0mA$, $V_{IN} = V_{EN/nFAULT} = V_{BIAS} = 2.5V$, $T_J = -40^{\circ}C$ to $+105^{\circ}C$			10	17	μA	
VBIAS Shutdown Supply Current	I _{SD_BIAS}	$V_{EN/nFAULT} = GND, T_J = -40^{\circ}C \text{ to } +105^{\circ}C$			0.002	1	μA	
			V_{IN} = 2.5V, T_{J} = -40°C to +105°C		0.005	2.2		
			V_{IN} = 1.8V, T_{J} = -40°C to +105°C		0.004	2	1	
VIN Shutdown Supply Current	I _{SD_IN}	$V_{EN/nFAULT} = GND$	V_{IN} = 1.5V, T_{J} = -40°C to +105°C		0.003	2	μA	
			V_{IN} = 1.2V, T_J = -40°C to +105°C		0.003	2		
			$V_{\rm IN}$ = 0.8V, $T_{\rm J}$ = -40°C to +105°C		0.001	2		
Logic Level Inputs								
EN/nFAULT Input Current	I _{EN/nFAULT}	$V_{EN/nFAULT} = 5.5V, T_{J} = -40^{\circ}C \text{ to } +105^{\circ}C$				1	μA	
EN/nFAULT Input Low Voltage	VIL	$T_J = -40^{\circ}C$ to $+105^{\circ}C$				0.4	V	
EN/nFAULT Input High Voltage	V _{IH}	$T_{\rm J} = -40^{\circ}C$ to $+105^{\circ}C$		1.05			V	
Resistance Characteristics								
			V _{IN} = 2.5V, T _J = +25°C		23		mΩ	
			V _{IN} = 1.8V, T _J = +25°C		19	25		
			V_{IN} = 1.8V, T_J = -40°C to +85°C			31	mΩ	
			V_{IN} = 1.8V, T_{J} = -40°C to +105°C			33		
			V _{IN} = 1.5V, T _J = +25°C		18	23		
			V_{IN} = 1.5V, T_J = -40°C to +85°C			29	mΩ	
On-State Switch Resistance	R _{DSON}	I _{OUT} = -0.2A	V_{IN} = 1.5V, T_J = -40°C to +105°C			31		
			V _{IN} = 1.2V, T _J = +25°C		18	23		
			V_{IN} = 1.2V, T_{J} = -40°C to +85°C			29	mΩ	
			V_{IN} = 1.2V, T_{J} = -40°C to +105°C			30		
			V _{IN} = 0.8V, T _J = +25°C		17	22		
			V_{IN} = 0.8V, T_{J} = -40°C to +85°C			27	mΩ	
			V_{IN} = 0.8V, T_{J} = -40°C to +105°C			29		
Quick Discharge Resistor (SGM2566A	Only)							
Output Shutdown Discharge Resistance	R _{DIS}	V_{IN} = 2.5V, $V_{EN/nF}$	_{FAULT} = 0V, T _J = -40°C to +105°C		275	375	Ω	

SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN} = V _{EN/nFAULT} = V _{BIAS} = 5	/, T」 = +25℃, u	nless otherwise noted.	·			•
Turn-On Time	t _{on}	$R_L = 10\Omega, C_{OUT} = 0.1 \mu F, C_{SS} = 1000 \mu F$		1620		
Turn-Off Time	t _{OFF}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		30		
V _{OUT} Rise Time	t _R	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		2800		μs
V _{OUT} Fall Time	t _F	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		5		1
On Delay Time	t _D	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		195		1
$V_{\rm IN}$ = 2.5V, $V_{\rm EN/nFAULT}$ = 5V,	V _{BIAS} = 2.5V, T _J	= +25°C, unless otherwise noted.				
Turn-On Time	t _{on}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		1880		
Turn-Off Time	t _{OFF}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		30		1
V _{OUT} Rise Time	t _R	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		3185		μs
V _{OUT} Fall Time	t _F	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		9		
On Delay Time	t _D	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		240		1
$V_{IN} = 0.8V, V_{EN/nFAULT} = 5V,$	V _{BIAS} = 5V, T _J =	+25°C, unless otherwise noted.				
Turn-On Time	t _{on}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		215		
Turn-Off Time	t _{OFF}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		35		
V _{OUT} Rise Time	t _R	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		395		μs
V _{OUT} Fall Time	t _F	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		7		1
On Delay Time	t _D	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		70		1
$V_{IN} = 0.8V, V_{EN/nFAULT} = 5V,$	V _{BIAS} = 2.5V, T _J	= +25°C, unless otherwise noted.				
Turn-On Time	t _{ON}	$R_L = 10\Omega, C_{OUT} = 0.1 \mu F, C_{SS} = 1000 \mu F$		555		
Turn-Off Time	t _{OFF}	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		55		
V _{OUT} Rise Time	t _R	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		990		μs
V _{OUT} Fall Time	t⊨	$R_L = 10\Omega, C_{OUT} = 0.1 \mu F, C_{SS} = 1000 \mu F$		8		1
On Delay Time	t _D	$R_L = 10\Omega, C_{OUT} = 0.1\mu F, C_{SS} = 1000 pF$		80		1

PARAMETER MEASUREMENT INFORMATION

SGM2566A SGM2566B

TYPICAL PERFORMANCE CHARACTERISTICS

V_{BIAS} Quiescent Supply Current vs. Junction Temperature

SGM2566A SGM2566B

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, unless otherwise noted.

125

2.5

2.5

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

Figure 4. Block Diagram

DETAILED DESCRIPTION

Overview

The SGM2566A and SGM2566B devices are single channel, 6A load switches in a TDFN package. To reduce the voltage drop in high current rails, the device implements an ultra-low resistance N-MOSFET. The device has a programmable slew rate for applications that require specific rise time.

The device has very low leakage current during off state. This prevents downstream circuits from pulling

high standby current from the supply. Integrated control logic, driver, power supply, and output discharge FET eliminate the need for any external components, which reduces solution size and bill of materials (BOM) count.

Short-Circuit Protection

When short-circuit occurs, the device shuts down and restarts after the hiccup time of 50ms. Figure 5 shows a test circuit for this function.

Figure 5. Test Setup of Short-Circuit Protection

DETAILED DESCRIPTION (continued)

Adjustable Rise Time

A capacitor to GND on the SS pin sets the slew rate. An approximate formula for the relationship between SS and slew rate when V_{BIAS} is set to 5V is shown in Equation 1. This equation accounts for 10% to 90% measurement on V_{OUT} and does not apply for C_{SS} = 0pF.

$$SR = 0.54 \times C_{SS} + 18$$
 (1)

where:

- SR is the slew rate (in µs/V).
- C_{SS} is the capacitance value on the SS pin (in pF).
- The unit for the constant 18 is μs/V. The unit for the constant 0.54 is μs/(V × pF).

Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values measured on a typical device. Rise times shown in Table 1 are only valid for the power-up sequence where $V_{\rm IN}$ and $V_{\rm BIAS}$ are already in steady state condition before the EN/nFAULT pin is asserted high.

Quick Output Discharge (QOD) (Optional)

The SGM2566A includes a QOD feature. When the switch is disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical

value of 265Ω and prevents the output from floating while the switch is disabled.

Low Power Consumption During Off State

The V_{IN} shutdown supply current is $0.003\mu A$ (TYP) at 1.8V V_{IN}. Typically, the downstream loads must have a significantly higher off state leakage current. The load switch allows system standby power consumption to be reduced.

EN/nFAULT Pin

EN/nFAULT is a dual-function bi-directional input or output. Asserting EN/nFAULT pin high enables the device. When any of over-temperature protection or short-circuit protection occurs, the device sinks current from EN/nFAULT, pulling the pin down to alert the host (pin as output port). EN/nFAULT changes back to an input port, only after the device is released from a protection action.

Reverse-Voltage Protection

The reverse-voltage protection feature turns off the N-MOSFET switch whenever the output voltage exceeds the input voltage by 3mV (TYP).

C _{ss} (pF)	V _{IN} = 5V	V _{IN} = 4.2V	V _{IN} = 3.3V	V _{IN} = 1.8V	V _{IN} = 1.5V	V _{IN} = 1.2V	V _{IN} = 1.05V	V _{IN} = 0.8V
0	201	185	171	134	125	110	110	94
220	570	468	358	180	145	110	110	98
470	1335	1116	859	433	351	273	233	166
1000	3011	2530	1966	1020	844	666	576	416
2200	6169	5213	4066	2155	1794	1423	1231	809
4700	14291	11826	9353	4904	4071	3231	2848	2083
10000	27772	23431	18219	9654	8035	6366	5550	4075

Table 1. Rise Time (μ s) vs. C_{ss} Capacitor

NOTE: T_J = +25°C, C_{OUT} = 0.1µF, C_{IN} = 10µF, R_L = 10 Ω and V_{BIAS} = 5V.

TYPICAL APPLICATION

This application demonstrates how the SGM2566A and SGM2566B can be used to power downstream modules.

Figure 6. Powering a Downstream Module

Inrush Current

 Table 2. Design Parameters Example

Design Parameter	Example Value
V _{IN}	3.3V
V _{BIAS}	5V
C _{OUT}	22µF
Maximum Acceptable Inrush Current	400mA

When the switch is enabled, the output capacitors must be charged up from 0V to the set value (3.3V in this example). This charge arrives in the form of inrush current. Inrush current can be calculated using Equation 2. Inrush Current = $C_{OUT} \times dV/dt$ (2)

where:

- C_{OUT} is the output capacitance.
- dV/dt is desired output slew rate.

The SGM2566A and SGM2566B offer adjustable rise time for VOUT. This feature allows the user to control the inrush current during turn-on. The appropriate rise time can be calculated using the design requirements and the inrush current equation. See Equation 3 and Equation 4.

$$400\text{mA} = 22\mu\text{F} \times 3.3\text{V/dt}$$
 (3)
dt = 181.5µs (4)

To ensure an inrush current of less than 400mA, choose an SS capacitor value that yields a rise time of more than 181.5μ s.

APPLICATION INFORMATION

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1 μ F ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current applications.

Output Filter Capacitor

Between VOUT and GND, connect a low-ESR 10μ F ceramic capacitor to meet the maximum drop requirement. Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector. This will reduce EMI and improve the transient performance. If long cables are connected to the output terminals, an anti-parallel schottky diode such as BAT54 is suggested to be placed in parallel with the output terminals to absorb the negative ringing due to the cable inductance.

V_{IN} and V_{BIAS} Voltage Range

For optimal R_{DSON} performance, make sure $V_{IN} \le V_{BIAS}$ - 30mV.

Thermal Considerations

The maximum IC junction temperature must be restricted to +125°C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(MAX)}$ for a given output current and ambient temperature, use Equation 5 as a guideline:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$
(5)

where:

- $P_{D(MAX)}$ is the maximum allowable power dissipation.
- T_{J(MAX)} is the maximum allowable junction temperature (+125°C for the SGM2566A and SGM2566B).
- T_A is the ambient temperature of the device.

• θ_{JA} is junction to air thermal impedance. This parameter is highly dependent upon board layout. See layout recommendation.

Notice that the thermal vias are located under the exposed thermal pad of the device. This allows for thermal dissipation away from the device.

Power Supply Recommendations

The device is designed to operate from a V_{BIAS} range of 2.5V to 5.5V and a V_{IN} range of 0.8V to 5.3V (< V_{BIAS}).

Layout Guidelines

For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance. The SS trace must be as short as possible to avoid parasitic capacitance.

Layout Example

Figure 7. Layout Recommendation

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (JULY 2019) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TDFN-2×2-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	3 REF	0.008 REF			
D	1.900	2.100	0.075	0.083		
D1	1.100	1.300	0.043	0.051		
Е	1.900	2.100	0.075	0.083		
E1	0.500	0.700	0.020	0.028		
k	0.200) MIN	300.0	3 MIN		
b	0.180	0.300	0.007	0.012		
е	0.500) TYP	0.020	TYP		
	0.250	0.450	0.010	0.018		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-2×2-8L	7″	9.5	2.30	2.30	1.10	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002