SGM2212 800mA, Low Noise, Low Quiescent Current, High PSRR, Low Dropout Linear Regulator

GENERAL DESCRIPTION

The SGM2212 is a low noise, low quiescent current, high PSRR, fast transient response and low dropout voltage linear regulator which is designed using CMOS technology. It provides 800mA output current capability. The operating input voltage range is from 2.7V to 20V. The fixed output voltages are 1.8V, 2.5V, 2.8V, 3.3V, 5V and adjustable output voltage range is from 1.25V to 15V.

Other features include short-circuit current limit and thermal shutdown protection.

The SGM2212 is available in Green TO-252-2, TO-263-3, SOT-223-3 and TDFN-3×3-8L packages. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Input Voltage Range: 2.7V to 20V
- Output Current: 800mA
- Fixed Output Voltages:1.8V, 2.5V, 2.8V, 3.3V, 5V
- Adjustable Output Voltage Range: 1.25V to 15V
- Output Voltage Accuracy: ±1% at +25°C
- Line Regulation: 0.012% (MAX)
- Load Regulation: 0.4% (MAX)
- Stable with Small Case Size Ceramic Capacitors
- Output Current Limit
- Thermal Shutdown Protection
- -40°C to +125°C Operating Temperature Range
- Available in Green TO-252-2, TO-263-3, SOT-223-3 and TDFN-3×3-8L Packages

APPLICATIONS

Portable Electronic Device Battery-Powered Equipment Industrial and medical Equipment Post Regulator for Switching DC/DC Converters

TYPICAL APPLICATION

Fixed Voltage Typical Application Circuit

Adjustable Voltage Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2212-1.8	TO-252-2	-40°C to +125°C	SGM2212-1.8XOB2G/TR	SGMCFB XOB2 XXXXX	Tape and Reel, 2500
SGM2212-2.5	TO-252-2	-40°C to +125°C	SGM2212-2.5XOB2G/TR	SGMCFC XOB2 XXXXX	Tape and Reel, 2500
SGM2212-2.8	TO-252-2	-40°C to +125°C	SGM2212-2.8XOB2G/TR	SGMCFD XOB2 XXXXX	Tape and Reel, 2500
SGM2212-3.3	TO-252-2	-40°C to +125°C	SGM2212-3.3XOB2G/TR	SGMCFE XOB2 XXXXX	Tape and Reel, 2500
SGM2212-5.0	TO-252-2	-40°C to +125°C	SGM2212-5.0XOB2G/TR	SGMCFF XOB2 XXXXX	Tape and Reel, 2500
SGM2212-1.8	TO-263-3	-40°C to +125°C	SGM2212-1.8XOA3G/TR	SGMCF6 XOA3 XXXXX	Tape and Reel, 800
SGM2212-2.5	TO-263-3	-40°C to +125°C	SGM2212-2.5XOA3G/TR	SGMCF7 XOA3 XXXXX	Tape and Reel, 800
SGM2212-2.8	TO-263-3	-40°C to +125°C	SGM2212-2.8XOA3G/TR	SGMCF8 XOA3 XXXXX	Tape and Reel, 800
SGM2212-3.3	TO-263-3	-40°C to +125°C	SGM2212-3.3XOA3G/TR	SGMCF9 XOA3 XXXXX	Tape and Reel, 800
SGM2212-5.0	TO-263-3	-40°C to +125°C	SGM2212-5.0XOA3G/TR	SGMCFA XOA3 XXXXX	Tape and Reel, 800
SGM2212-1.8	SOT-223-3	-40°C to +125°C	SGM2212-1.8XKC3G/TR	CAD XXXXX	Tape and Reel, 2500
SGM2212-2.5	SOT-223-3	-40°C to +125°C	SGM2212-2.5XKC3G/TR	CAE XXXXX	Tape and Reel, 2500
SGM2212-2.8	SOT-223-3	-40°C to +125°C	SGM2212-2.8XKC3G/TR	CAF XXXXX	Tape and Reel, 2500
SGM2212-3.3	SOT-223-3	-40°C to +125°C	SGM2212-3.3XKC3G/TR	MN4 XXXXX	Tape and Reel, 2500
SGM2212-5.0	SOT-223-3	-40°C to +125°C	SGM2212-5.0XKC3G/TR	MN5 XXXXX	Tape and Reel, 2500
SGM2212-ADJ	TDFN-3×3-8L	-40°C to +125°C	SGM2212-ADJXTDB8G/TR	SGM MN6DB XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code. TO-252-2/TO-263-3/SOT-223-3/TDFN-3×3-8L

XXXXX Vendor Code Trace Code Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

VIN to GND	22V
Package Thermal Resistance	
TO-252-2, θ _{JA}	56°C/W
TO-252-2, θ _{JB}	30°C/W
TO-252-2, θ _{JC}	63°C/W
TO-263-3, θ _{JA}	51°C/W
TO-263-3, θ _{JB}	28°C/W
TO-263-3, θ _{JC}	53°C/W
SOT-223-3, θ _{JA}	117°C/W
SOT-223-3, θ _{JB}	29°C/W
SOT-223-3, θ _{JC}	62°C/W
TDFN-3×3-8L, θ _{JA}	82°C/W
TDFN-3×3-8L, θ _{JB}	42°C/W
TDFN-3×3-8L, θ _{JC}	54°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	
ESD Susceptibility	
НВМ	7000V
CDM	

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.7V to 20V
Input Effective Capacitance, CIN	1µF (MIN)
Output Effective Capacitance, COUT	1µF to 10µF
Operating Junction Temperature Range	-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SGM2212

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN			NAME	FUNCTION			
TO-252-2	TO-263-3	SOT-223-3	TDFN- 3×3-8L	NAME	FUNCTION			
1	1	1	1	GND	Ground.			
2	2	2	5, 6, 7	VOUT	Regulator Output Pin. It is recommended to use an output capacitor with effective capacitance in the range of 1μ F to 10μ F. Pins 5, 6 and 7 must be connected together for TDFN-3×3-8L package.			
3	3	3	2, 3, 4	VIN	Input Voltage Supply Pin. Pins 2, 3 and 4 must be connected together for TDFN-3×3-8L package.			
_	_	_	8	ADJ	Feedback Input Pin (adjustable voltage version only). Connect this pin to the external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.			
ТАВ	TAB	TAB	Exposed Pad	VOUT	Exposed Pad. Connected to VOUT pin.			

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOM)} + 1V, C_{IN} = C_{OUT} = 2.2\mu$ F, T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS		
Input Voltage	V _{IN}			2.7		20	V	
	Ň		I _{OUT} = 10mA, T _J = +25°C	1.238	1.25	1.262	Ň	
Reference Voltage	V _{FB}	SGM2212-ADJ	I _{OUT} = 0 to 800mA	1.232		1.268	V	
		COM0040 4 0	I _{OUT} = 10mA, T _J = +25°C	1.782	1.8	1.818		
		SGM2212-1.8	I _{OUT} = 0 to 800mA	1.773		1.827		
		COM0040.0.5	I _{OUT} = 10mA, T _J = +25°C	2.475	2.5	2.525		
		SGM2212-2.5	I _{OUT} = 0 to 800mA	2.463		2.537		
Output Voltage	V	SCM2212.2.9	I _{OUT} = 10mA, T _J = +25°C	2.772	2.8	2.828	V	
Oulput Vollage	V _{OUT}	SGM2212-2.8	I _{OUT} = 0 to 800mA	2.758		2.842	V	
		COM0040.0.0	I _{OUT} = 10mA, T _J = +25°C	3.267	3.3	3.333		
		SGM2212-3.3	I _{OUT} = 0 to 800mA	3.251		3.349		
		00140040 5 0	I _{OUT} = 10mA, T _J = +25°C	4.950	5.0	5.050		
		SGM2212-5.0	I _{OUT} = 0 to 800mA	4.925		5.075		
	ΔV_{OUT}	1 - 10m A	SGM2212-ADJ, T _J = +25°C		0.001	0.007	0/ 0/	
	$\overline{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	I _{OUT} = 10mA	SGM2212-ADJ			0.012	%/V	
		I _{OUT} = 0mA	SGM2212-1.8, T _J = +25°C		0.2	1.5		
			SGM2212-1.8			2.5	- - - - -	
			SGM2212-2.5, T _J = +25°C		0.2	1.5		
Line Degulation			SGM2212-2.5			2.5		
Line Regulation	ΔV _{OUT}		SGM2212-2.8, T _J = +25°C		0.2	1.5		
			SGM2212-2.8			2.5		
			SGM2212-3.3, T _J = +25°C		0.2	1.5		
			SGM2212-3.3			2.5		
			SGM2212-5.0, T _J = +25°C		0.2	1.5	-	
			SGM2212-5.0			2.5		
	ΔV_{OUT}		SGM2212-ADJ, T _J = +25°C		0.08	0.32	0/	
	V _{out}	$I_{OUT} = 0$ to $800mA$	SGM2212-ADJ			0.4	%	
			SGM2212-1.8, T _J = +25°C		1	4		
			SGM2212-1.8			5		
			SGM2212-2.5, T _J = +25°C		1.2	6		
Lood Domilation			SGM2212-2.5			7		
Load Regulation	A) /		SGM2212-2.8, T _J = +25℃		1.5	6	- mV	
	ΔV_{OUT}	$I_{OUT} = 0$ to 800mA	SGM2212-2.8			8		
			SGM2212-3.3, T _J = +25°C		2	8	-	
			SGM2212-3.3			10		
			SGM2212-5.0, T _J = +25℃		2	8		
			SGM2212-5.0		Ì	10	1	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = V_{OUT(NOM)} + 1V, C_{IN} = C_{OUT} = 2.2\mu$ F, T_J = -40°C to +125°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		I _{OUT} = 100mA, T _J = +25°C		35	45	m)/	
Dropout Voltage ⁽¹⁾		I _{OUT} = 100mA			55	mV	
Dropout Voltage ⁽¹⁾	M	I _{OUT} = 500mA, T _J = +25°C		170	210	m)/	
$(ADJ, V_{OUT} = 3.3V)$	V _{DROP}	I _{OUT} = 500mA			275	mV	
		I _{OUT} = 800mA, T _J = +25°C		280	350	m)/	
		I _{OUT} = 800mA			450	mV	
		I _{OUT} = 100mA, T _J = +25°C		50	60	m)/	
		I _{OUT} = 100mA			80	mV	
Dropout Voltage ⁽¹⁾	M	I _{OUT} = 500mA, T _J = +25°C		240	280	m)/	
(V _{OUT} = 3.3V)	V _{DROP}	I _{OUT} = 500mA			380	380 mV	
		I _{OUT} = 800mA, T _J = +25°C		390	450	m)/	
		I _{OUT} = 800mA			610	mV	
Output Current Limit	I _{LIMIT}	$V_{OUT} = 80\% \times V_{OUT(NOM)}$ ⁽²⁾	810	1100		mA	
Short Current Limit	I _{SHORT}	V _{IN} = 3V, V _{OUT} = 0V		360		mA	
		$I_{OUT} = 0mA, T_J = +25^{\circ}C$		80	110		
		I _{OUT} = 0mA			116	μA	
Ground Pin Current		I _{OUT} = 100mA, T _J = +25°C		290	360		
Ground Pin Guneni		I _{OUT} = 100mA			370 µA		
		I _{OUT} = 800mA, T _J = +25°C		1350	1560	μA	
		I _{OUT} = 800mA			1610	μΑ	
Power Supply Rejection Ratio	PSRR	f_{RIPPLE} = 120Hz, V_{RIPPLE} = $\Delta 0.2V_{P-P}$		80		dB	
AD Din Current		$T_J = +25^{\circ}C$		1	5	nA	
ADJ Pin Current	I _{ADJ}				10		
Long Term Stability		1000Hrs, T _J = +125°C		0.1		%	
RMS Output Noise		(% of V_{OUT}), f = 10Hz to 100kHz, I_{OUT} = 50mA		0.002		%	
Thermal Shutdown Temperature	T_{SHDN}			165		°C	
Thermal Shutdown Hysteresis	ΔT_{SHDN}			25		°C	

NOTES:

1. The dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls to 95% × $V_{OUT(NOM)}$.

2. $V_{OUT} = 80\% \times V_{OUT(NOM)}$ when $V_{OUT} \le 2.8V$, $V_{IN} = V_{OUT} + 1.3V$.

TYPICAL PERFORMANCE CHARACTERISTICS

 T_J = +25°C, C_{IN} = C_{OUT} = 2.2µF, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, C_{IN} = C_{OUT} = 2.2µF, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAMS

Figure 3. Adjustable Output Regulator Block Diagram

SGM2212

APPLICATION INFORMATION

The SGM2212 is a low noise, fast transient response high performance LDO, it consumes only $80\mu A$ (TYP) quiescent current and provides 800mA output current. The SGM2212 provides the protection function for output overload, output short-circuit condition and overheating.

The SGM2212 is suitable for application which has noise sensitive circuit such as battery-powered equipment and smartphones.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor is necessary to be connected as close as possible to the VIN pin for ensuring the device stability. 2.2μ F or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output decoupling capacitor should be located as close as possible to the VOUT pin. A 2.2 μ F or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2212 can remain stable is 1 μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Larger capacitance and lower ESR C_{OUT} will help improve the load transient response and increase the high frequency PSRR.

Adjustable Regulator

The output voltage of the SGM2212 can be adjusted from 1.25V to 15V. The ADJ pin will be connected with two external resistors as shown in Figure 4, the output voltage is determined by the following equation:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right)$$
(1)

where:

 V_{OUT} is output voltage and V_{FB} is the internal voltage reference, V_{FB} = 1.25V.

Figure 4. Adjustable Output Voltage Application

 R_1 and R_2 can be calculated for any output voltage range using Equation 1. Choose $R_2 = 10k\Omega$ to maintain an 125µA minimum load.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1100mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 360mA (TYP).

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2212. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much that raise the operation junction temperature exceeds +165°C, the OTP circuit starts the thermal shutdown function and turns the pass element off.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2212 must not exceed +125°C.

In order to calculate the maximum power that the device can dissipate, the following formula is used:

$$P_{D(MAX)} = (125^{\circ}C - T_A) / \theta_{JA}$$
 (2)

where T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

APPLICATION INFORMATION (continued)

Thermal Shutdown

The SGM2212 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2212 will be in shutdown state and remain in this state until the die temperature decreases to $+140^{\circ}$ C.

Input Power Supply

The input power supply range is from 2.7V to 20V. V_{IN} must be larger than ($V_{OUT} + V_{DROP}$) in application. The input ceramic capacitor must be placed as close as possible to the IN pin, this C_{IN} can help improve the output noise performance of LDO.

Layout Guidelines

To get good PSRR, low output noise and high transient response performance, the input and output bypass capacitors must be placed as close as possible to the VIN pin and VOUT pin separately. V_{IN} and V_{OUT} had better use separate ground planes and these ground planes are single point connected to the GND pin.

TO-252-2

Symbol		nsions meters	Dimen In Inc		
	MIN	MAX	MIN	MAX	
А	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
с	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830	REF	0.190 REF		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900	REF	0.114 REF		
L2	1.400	1.700	0.055	0.067	
L3	1.600) REF	0.063 REF		
L4	0.600	1.000	0.024	0.039	
θ	0°	8°	0°	8°	
V	5.350	REF	0.211	REF	

NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TO-263-3

Symbol		nsions meters	Dimensions In Inches		
- ,	MIN	MAX	MIN	MAX	
А	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
В	1.120	1.420	0.044	0.056	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.500	8.900	0.335	0.350	
е	2.540) TYP	0.100 TYP		
e1	4.980	5.180	0.196	0.204	
L	14.940	15.500	0.588	0.610	
L1	4.950	5.450	0.195	0.215	
L2	2.340	2.740	0.092	0.108	
θ	0°	8°	0°	8°	
D1	7.510	8.510	0.296	0.335	
V	4.800	5.800	0.189	0.228	

NOTES: 1. Body dimensions do not include mode flash or protrusion. 2. This drawing is subject to change without notice.

SOT-223-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	3.300	3.700	0.130	0.146	
E1	6.700	7.300	0.264	0.287	
е	2.300	BSC	0.091	BSC	
L	0.750		0.030		
θ	0°	10°	0°	10°	

NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TDFN-3×3-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	3 REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	2.200	2.400	0.087	0.094	
E	2.900	3.100	0.114	0.122	
E1	1.400	1.600	0.055	0.063	
k	0.200) MIN	0.008 MIN		
b	0.180	0.300	0.007	0.012	
е	0.650) TYP	0.026	6 TYP	
L	0.375	0.575	0.015	0.023	

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TO-252-2	13″	16.4	6.90	10.50	2.70	4.0	8.0	2.0	16.0	
TO-263-3	13″	24.4	10.80	16.13	4.70	4.0	16.0	2.0	24.0	
SOT-223-3	13″	12.4	6.55	7.25	1.90	4.0	8.0	2.0	12.0	Q3
TDFN-3×3-8L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002