SGM2217 1.5A, Low Dropout Positive Regulator

GENERAL DESCRIPTION

The SGM2217 is a low noise, high current and low dropout voltage linear regulator. It is capable of supplying 1.5A output current with typical dropout voltage of 1.3V. The operating input voltage range is from 2.8V to 30V. The fixed output voltages are 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V and 12V. The adjustable output voltage range is from 1.25V to 26V.

Other features include short-circuit current limit and thermal shutdown protection.

The SGM2217 is available in Green TO-263-3A and TDFN-4×4-8L packages. It operates over an operating temperature range of -40°C to +125°C.

TYPICAL APPLICATION

FEATURES

- Wide Input Voltage Range: 2.8V to 30V
- Adjustable Output from 1.25V to 26V
- Fixed Outputs of 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V and 12V
- 1.5A Maximum Output Current
- Low Dropout Voltage: 1.3V (TYP) at 1.5A
- Line Regulation: 0.04% (TYP)
- Load Regulation: 0.04% (TYP)
- Current Limiting and Thermal Protection
- Excellent Load and Line Transient Responses
- Stable with Small Case Size Ceramic Capacitors
- -40°C to +125°C Operating Temperature Range
- Available in Green TO-263-3A and TDFN-4×4-8L Packages

APPLICATIONS

Battery Chargers Microprocessor Supplies Switching Power Supplies Constant Current Monitoring System

Figure 1. Typical Application Circuits

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2217-1.8	TO-263-3A	-40°C to +125°C	SGM2217-1.8XOA3G/TR	SGMR9B XOA3 XXXXX	Tape and Reel, 800
36102217-1.0	TDFN-4×4-8L	-40°C to +125°C	SGM2217-1.8XTEL8G/TR	SGMR9D XTEL8 XXXXX	Tape and Reel, 3000
SGM2217-2.5	TO-263-3A	-40°C to +125°C	SGM2217-2.5XOA3G/TR	SGMRBA XOA3 XXXXX	Tape and Reel, 800
00002217-2.0	TDFN-4×4-8L	-40°C to +125°C	SGM2217-2.5XTEL8G/TR	SGMRBB XTEL8 XXXXX	Tape and Reel, 3000
SGM2217-2.8	TO-263-3A	-40°C to +125°C	SGM2217-2.8XOA3G/TR	SGMRBC XOA3 XXXXX	Tape and Reel, 800
00002217-2.0	TDFN-4×4-8L	-40°C to +125°C	SGM2217-2.8XTEL8G/TR	SGMRBD XTEL8 XXXXX	Tape and Reel, 3000
SGM2217-3.0	TO-263-3A	-40°C to +125°C	SGM2217-3.0XOA3G/TR	SGMRBE XOA3 XXXXX	Tape and Reel, 800
00002217-0.0	TDFN-4×4-8L	-40°C to +125°C	SGM2217-3.0XTEL8G/TR	SGMRBF XTEL8 XXXXX	Tape and Reel, 3000
SCM2217-3-3	TO-263-3A	-40°C to +125°C	SGM2217-3.3XOA3G/TR	SGMRC0 XOA3 XXXXX	Tape and Reel, 800
SGM2217-3.3	TDFN-4×4-8L	-40°C to +125°C	SGM2217-3.3XTEL8G/TR	SGMRC1 XTEL8 XXXXX	Tape and Reel, 3000
SGM2217-5.0	TO-263-3A	-40°C to +125°C	SGM2217-5.0XOA3G/TR	SGMRC2 XOA3 XXXXX	Tape and Reel, 800
36M2217-5.0	TDFN-4×4-8L	-40°C to +125°C	SGM2217-5.0XTEL8G/TR	SGMRC3 XTEL8 XXXXX	Tape and Reel, 3000
SGM2217-12	TO-263-3A	-40°C to +125°C	SGM2217-12XOA3G/TR	SGMR9C XOA3 XXXXX	Tape and Reel, 800
56IWIZZ 17-12	TDFN-4×4-8L	-40°C to +125°C	SGM2217-12XTEL8G/TR	SGMRA3 XTEL8 XXXXX	Tape and Reel, 3000
SCM2217 AD L	TO-263-3A	-40°C to +125°C	SGM2217-ADJXOA3G/TR	SGM2217 XOA3 XXXXX	Tape and Reel, 800
SGM2217-ADJ	TDFN-4×4-8L	-40°C to +125°C	SGM2217-ADJXTEL8G/TR	SGM2217 XTEL8 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXXXX

Vendor Code

Trace Code

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Input to Output Voltage	31V
Package Thermal Resistance	
TO-263-3A, θ _{JA}	30°C/W
TO-263-3A, θ _{JB}	32°C/W
ΤΟ-263-3Α, θ _{JC(TOP)}	5°C/W
TO-263-3A, θ _{JC(BOT)}	
TDFN-4×4-8L, θ _{JA}	42°C/W
TDFN-4×4-8L, θ _{JB}	16°C/W
TDFN-4×4-8L, $\theta_{JC(TOP)}$	27°C/W
TDFN-4×4-8L, θ _{JC(BOT)}	
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	3000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	.2.8V to 30V
Input Effective Capacitance, C _{IN}	2.3µF (MIN)
Output Effective Capacitance, COUT2.3	βμF to 100μF
Capacitor Effective Series Resistance, ESR	1mΩ to 8Ω
Operating Junction Temperature Range40°	C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

Р	IN	NAME	FUNCTION
TO-263-3A	TDFN-4×4-8L	NAME	FUNCTION
1	3	ADJ	Feedback Voltage Input Pin (adjustable voltage version only). Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.
	GND		Ground (fixed output voltage version only).
2, TAB	Exposed Pad	OUT	Regulator Output Pin. It is recommended to use a ceramic capacitor with effective capacitance in the range of 2.3μ F to 100μ F to get good power supply decoupling. This ceramic capacitor should be placed as close as possible to OUT pin.
3	7, 8	IN	Input Supply Voltage Pin. It is recommended to use a 4.7μ F or larger ceramic capacitor from IN pin to ground. This ceramic capacitor should be placed as close as possible to IN pin.
_	1, 2, 4, 5, 6	NC	No Connection.

ELECTRICAL CHARACTERISTICS

 $(T_J = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_J = +25^{\circ}C, C_{IN} = C_{OUT} = 10\mu\text{F}$ (ceramic capacitor), unless otherwise noted.)

PARAMETER	SYMBOL	C	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Voltage		I _{OUT} = 5mA, (V _{IN} - V _{OUT}	r) = 3V, T _J = +25°C	1.238	1.25	1.262	
(SGM2217-ADJ)	V_{REF}	I_{OUT} = 5mA to 1.5A ⁽¹⁾ ,	$V_{IN} = (1.55V + V_{OUT}) \text{ to } 30V$	1.225		1.275	V
Output Voltage Accuracy		$I_{OUT} = 0mA$, $(V_{IN} - V_{OUT}) = 3V$, $T_J = +25^{\circ}C$				+1	0/
(SGM2217-Fixed Output)	Vout	I_{OUT} = 0mA to 1.5A ⁽¹⁾ ,	$V_{IN} = (1.55V + V_{OUT}) \text{ to } 30V$	-2		+2	%
		I _{OUT} = 5mA, V _{IN} = (1.55 T _J = +25℃	5V + V _{OUT}) to 30V, SGM2217-ADJ,		0.04	0.16	
	ΔV_{OUT}		5V + V _{OUT}) to 30V, SGM2217-ADJ			0.20	
Line Regulation	Vout	$I_{OUT} = 0mA, V_{IN} = (1.55)$ SGM2217-Fixed Outp	ut, T _J = +25°C		0.04	0.16	%
		$I_{OUT} = 0mA, V_{IN} = (1.55)$ SGM2217-Fixed Outp				0.20	
		I_{OUT} = 5mA to 1.5A, (V	′ _{IN} - V _{OUT}) = 3V, T _J = +25°C		0.04	0.3	
Load Regulation	ΔV_{OUT}	$I_{OUT} = 5mA$ to 1.5A, $(V_{IN} - V_{OUT}) = 3V$				0.4	%
	V _{OUT}	I_{OUT} = 0mA to 1.5A, (V _{IN} - V _{OUT}) = 3V, T _J = +25°C			0.04	0.3	%
		I_{OUT} = 0mA to 1.5A, (V _{IN} - V _{OUT}) = 3V				0.4	
Dropout Voltage	V _{DROP}	I _{OUT} = 1.5A, ΔV _{OUT} = 1%			1.3	1.55	V
Output Current Limit	I _{LIMIT}	$(V_{IN} - V_{OUT}) = 5V, \Delta V_{OUT} = 5\%$		1.55	3		А
	LIMIT	(V _{IN} - V _{OUT}) = 25V, V _{OUT} = 0V			0.3		
Thermal Regulation		30ms Pulse, T _J = +25°C			0.01	0.07	%/W
Supply Pin Current	Ι _Q	V_{IN} = 30V, I_{OUT} = 0mA, SGM2217-Fixed Output			2	5	mA
Minimum Load Current	$I_{OUT_{MIN}}$	V _{IN} = 30V, SGM2217-ADJ			2	5	mA
ADJ Pin Current	I_{ADJ}	I_{OUT} = 5mA, (V _{IN} - V _{OUT}) = 3V, SGM2217-ADJ			8	20	μΑ
ADJ Pin Current Change	ΔI_{ADJ}	I _{ουτ} = 5mA to 1.5A, (V SGM2217-ADJ	I_{OUT} = 5mA to 1.5A, (V _{IN} - V _{OUT}) = 1.55V to 15V, SGM2217-ADJ		0.2	2	μA
Turn-On Time	t _{on}	From assertion of V_{IN}	to $V_{OUT} = 95\% \times V_{OUT(NOM)}$		0.2	1	ms
Temperature Stability					0.5		%
Long Term Stability		1000 hours, T _J = +125	5°C		0.3		%
		$\Delta V_{\text{RIPPLE}} = 3V_{\text{P-P}},$	C _{ADJ} = 25µF, SGM2217-ADJ		72		
		(V _{IN} - V _{OUT}) = 3V,	V _{OUT} = 1.8V		68		
Power Supply Ripple Rejection	PSRR	I _{OUT} = 1.5A,	V _{OUT} = 3.3V		64		dB
		f _{RIPPLE} = 120Hz,	V _{OUT} = 5.0V		60		
		С _{оит} = 20µF	V _{OUT} = 12V		53		
Output Voltage Noise	en	f = 10Hz to 10kHz, I _{ou}	_T = 1.5A		0.004		%
Thermal Shutdown Temperature	T _{SHDN}				160		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}				20		°C

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_J = +25^{\circ}C$, $(V_{IN} - V_{OUT}) = 3V$, $C_{IN} = C_{OUT} = 10\mu F$ (ceramic capacitor), unless otherwise noted.

Time (200µs/div)

Time (200µs/div)

Time (100µs/div)

Time (200µs/div)

VIN Power-Up Output Waveform

FUNCTIONAL BLOCK DIAGRAMS

Figure 2. Adjustable Output Voltage Internal Block Diagram

Figure 3. Fixed Output Voltage Internal Block Diagram

APPLICATION INFORMATION

The SGM2217 is a low noise, high current and low dropout LDO and provides 1.5A output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2217 useful in a variety of applications. The SGM2217 provides protection functions for output overload, output short-circuit condition and overheating.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor is necessary to be connected as close as possible to the IN pin for ensuring the device stability. 10μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output decoupling capacitor should be located as close as possible to the OUT pin. 10μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2217 can remain stable is 2.3 μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Larger capacitance and lower ESR C_{OUT} will help improve the load transient response and increase the high frequency PSRR.

Adjustable Regulator

The output voltage of the SGM2217-ADJ can be adjusted from 1.25V to 26V. The ADJ pin will be connected to two external resistors as shown in Figure 4. The output voltage is determined by the following equation:

$$V_{OUT} = 1.25 V \times \left(1 + \frac{R_2}{R_1}\right)$$
(1)

One parallel capacitor (C_{FF}) with R_2 can be used to improve the feedback loop stability and PSRR, increase the transient response and reduce the output noise.

Figure 4. Adjustable Output Voltage Application

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 3A (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current.

Thermal Shutdown

The SGM2217 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2217 will be in shutdown state and it will remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2217. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much and the operating junction temperature exceeds +160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2217 must not exceed +125°C.

The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction temperature and ambient temperature. The maximum power dissipation can be approximated using the following equation:

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$$
(3)

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction -to-ambient thermal resistance.

Page

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (JUNE 2021) to REV.A

_					-
Changed fror	m product preview	to production data	 	 	All

PACKAGE OUTLINE DIMENSIONS

TO-263-3A

Symphol	Dir	nensions In Millimete	ers
Symbol	MIN	MOD	МАХ
A	4.400	4.570	4.700
A1	0.000	0.100	0.250
A2	2.590	2.690	2.790
В	1.170	1.270	1.400
b	0.770	-	0.900
b1	1.230	-	1.360
С	0.340	-	0.470
c1	1.220	-	1.320
D	10.060	10.160	10.260
D1	7.800	-	8.200
E	9.050	9.150	9.250
е		2.540 BSC	
L	14.700	15.100	15.500
L1		2.000 REF	
L2	2.000	2.300	2.600
V	6.600	-	-
θ	0°		8°

NOTE: This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

TDFN-4×4-8L

Symbol	Dii	imensions In Millimeters					
	MIN	MOD	MAX				
A	0.700	0.750	0.800				
A1	-	-	0.050				
A2		0.203 REF					
D	3.950	4.000	4.050				
D1	2.950	3.000	3.050				
E	3.950	4.000	4.050				
E1	2.150	2.200	2.250				
b	0.250	0.300	0.350				
е	0.800 BSC						
L	0.450	0.500	0.550				

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TO-263-3A	13″	24.4	10.80	16.30	5.11	4.0	16.0	2.0	24.0	
TDFN-4×4-8L	13″	12.4	4.30	4.30	1.10	4.0	8.0	2.0	12.0	Q2

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002