LOW-POWER DUAL INVERTER GATE

Check for Samples: SN74AUP2G04

FEATURES

- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption: $I_{CC} = 0.9 \ \mu A Max$
- Low Dynamic-Power Consumption: C_{pd} = 4.3 pF Typ at 3.3 V
- Low Input Capacitance: C_i = 1.5 pF Typ
- Low Noise: Overshoot and Undershoot <10% of V_{CC}
- I_{off} Supports Partial-Power-Down Mode Operation
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
 - DCK PACKAGE DRY PACKAGE (TOP VIEW) (TOP VIEW) 6 1 1A 1Y 1A 6 GND 2 5 2 V_{cc} GND 5 4 2A 3 3 4 2A 2Y

N.C. – No internal connection

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life (see Figure 1). This product also maintains excellent signal integrity (see the very low undershoot and overshoot characteristics shown in Figure 2).

1Y

V_{cc}

2Y

The SN74AUP2G04 performs the Boolean function $Y = \overline{A}$ in positive logic.

- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 4.3 ns Max at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

SN74AUP2G04

SCES747B - SEPTEMBER 2009 - REVISED MARCH 2010

NanoStar[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YFP (Pb-free)	Reel of 3000	SN74AUP2G04YFPR	HC_
-40°C to 85°C	QFN – DRY	Reel of 5000	SN74AUP2G04DRYR	H4
	uQFN – DSF	Reel of 5000	SN74AUP2G04DSFR	H4
	SOT (SC-70) – DCK	Reel of 3000	SN74AUP2G04DCKR	H4_

ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) DCK: The actual top-side marking has one additional character that designates the water fab/assembly site. YFP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the water fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

(Each Inverter)				
INPUT A	OUTPUT Y			
Н	L			
L	н			

FUNCTION TABLE

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the I	high-impedance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low stat	e ⁽²⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±20	mA
	Continuous current through V_{CC} or GND			±50	mA
		DCK package		252	
0	De alve se the second ince a de second	DRY package		234	0 0 AA
θ_{JA}	Package thermal impedance ⁽³⁾	DSF package	300		°C/W
		YFP package		132	
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
The package thermal impedance is calculated in accordance with JESD 51-7.

<u>RECOMMENDED OPERATING CONDITIONS</u>⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		0.8	3.6	V
		V _{CC} = 0.8 V	V _{CC}		
V		V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.6		V
		V_{CC} = 3 V to 3.6 V	2		
		$V_{CC} = 0.8 V$		0	
\ <i>\</i>		V _{CC} = 1.1 V to 1.95 V		0.35 × V _{CC}	
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 3 V \text{ to } 3.6 V$		0.9	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-20	μA
		V _{CC} = 1.1 V		-1.1	
		V _{CC} = 1.4 V		-1.7	
I _{ОН}	High-level output current	V _{CC} = 1.65		-1.9	mA
		V _{CC} = 2.3 V	c = 2.3 V		
		V _{CC} = 3 V		-4	
		V _{CC} = 0.8 V		20	μA
		V _{CC} = 1.1 V		1.1	
		V _{CC} = 1.4 V		1.7	
I _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	
		$V_{CC} = 2.3 V$		3.1	
		V _{CC} = 3 V		4	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$		200	ns/V
T _A	Operating free-air temperature	•	-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow of Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS	N	TA	= 25°C	T _A = -40°C	to 85°C				
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	MIN	MAX	UNIT			
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} – 0.1		V _{CC} – 0.1					
	I _{OH} = -1.1 mA	1.1 V	0.75 × V _{CC}		$0.7 \times V_{CC}$					
	I _{OH} = -1.7 mA	1.4 V	1.11		1.03					
N/	I _{OH} = -1.9 mA	1.65 V	1.32		1.3		V			
V _{OH}	I _{OH} = -2.3 mA	2.3 V	2.05		1.97		v			
	I _{OH} = -3.1 mA	2.3 V	1.9		1.85					
	I _{OH} = -2.7 mA	3 V	2.72		2.67					
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55					
	I _{OL} = 20 μA	0.8 V to 3.6 V		0.1		0.1				
	I _{OL} = 1.1 mA	1.1 V		$0.3 \times V_{CC}$		$0.3 \times V_{CC}$				
	I _{OL} = 1.7 mA	1.4 V		0.31		0.37	V			
N/	I _{OL} = 1.9 mA	1.65 V		0.31		0.35				
V _{OL}	I _{OL} = 2.3 mA	2.3 V		0.31		0.33				
	I _{OL} = 3.1 mA	2.3 V		0.44		0.45				
	I _{OL} = 2.7 mA	3 V		0.31		0.33				
	$I_{OL} = 4 \text{ mA}$	3 V		0.44		0.45				
II A or B input	$V_I = GND$ to 3.6 V	0 V to 3.6 V		0.1		0.5	μA			
l _{off}	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}$	0 V		0.2		0.6	μA			
ΔI _{off}	V_{I} or V_{O} = 0 V to 3.6 V	0 V to 0.2 V		0.2		0.6	μA			
I _{CC}	$V_1 = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_0 = 0$	0.8 V to 3.6 V		0.5		0.9	μA			
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V^{(1)}, I_{O} = 0$	3.3 V		40		50	μA			
0		0 V		1.5			- F			
C _i	$V_{I} = V_{CC}$ or GND	CC or GND 3.6 V		1.5			pF			
Co	$V_0 = GND$	0 V		3			pF			

(1) One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 5 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	N	T,	_A = 25°C	;	T _A = −40°C t	o 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
		0.8 V		18					
			1.2 V ± 0.1 V	2.6	7.3	12.8	2.1	15.6	
	A or B	v	1.5 V ± 0.1 V	1.4	5.2	8.7	0.9	10.3	~~
t _{pd}	AUB	T	1.8 V ± 0.15 V	1	4.2	6.6	0.5	8.2	ns
		2.5 V ± 0.2 V	1	3	4.4	0.5	5.5		
			3.3 V ± 0.3 V	1	2.4	3.5	0.5	4.3	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER FROM TO Vcc		FROM TO V			ק = 25°C	;	T _A = −40°C t	o 85°C	
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
		0.8 V		21					
		1.2 V ± 0.1 V	1.5	8.5	14.7	1	17.2		
	A or B	v	1.5 V ± 0.1 V	1	6.2	10	0.5	11.3	~~
t _{pd}	AUB	T	1.8 V ± 0.15 V	1	5	7.7	0.5	9	ns
		2.5 V ± 0.2 V	1	3.6	5.2	0.5	6.1		
			3.3 V ± 0.3 V	1	2.9	4.2	0.5	4.7	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	М	T,	λ = 25°C		T _A = −40°C t	o 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
		_	0.8 V		24				
	A or P		1.2 V ± 0.1 V	3.6	9.9	16.3	3.1	19.9	
		v	1.5 V ± 0.1 V	2.3	7.2	11.1	1.8	13.2	20
t _{pd}	A or B	ř	1.8 V ± 0.15 V	1.6	5.8	8.7	1.1	10.6	ns
			2.5 V ± 0.2 V	1	4.3	5.9	0.5	7.3	
			3.3 V ± 0.3 V	1	3.4	4.8	0.5	5.9	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, C_L = 30 pF (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	Τ,	ג = 25°C		T _A = -40°C to 85°C		UNIT
FARAMETER	(INPUT)			MIN	TYP	MAX	MIN	MAX	UNIT
		Y	0.8 V		32.8				
			1.2 V ± 0.1 V	4.9	13.1	20.9	4.4	25.5	
	A or B		1.5 V ± 0.1 V	3.4	9.5	14.2	2.9	16.9	20
t _{pd}	AOID		1.8 V ± 0.15 V	2.5	7.7	11	2	13.5	ns
			2.5 V ± 0.2 V	1.8	5.7	7.6	1.3	9.4	
			3.3 V ± 0.3 V	1.5	4.7	6.2	1	7.5	

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			0.8 V	4	
			1.2 V ± 0.1 V	4	
C	Dower discipation conscitance	f = 10 MHz	1.5 V ± 0.1 V	4	- F
C _{pd}	Power dissipation capacitance		1.8 V ± 0.15 V	4	pF
			2.5 V ± 0.2 V	4.1	
			3.3 V ± 0.3 V	4.3	

PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width)

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
VM	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , for propagation delays t_r/t_f = 3 ns, for setup and hold times and pulse width t_r/t_f = 1.2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd} .
- F. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

LOAD CIRCUIT

SN74AUP2G04

SCES747B-SEPTEMBER 2009-REVISED MARCH 2010

LOAD CIRCUIT

TEST	S1
t _{PLZ} /t _{PZL}	$2 \times V_{CC}$
t _{PHZ} /t _{PZH}	GND
	l]

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V
С _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V _Δ	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f = 3 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PLH} and t_{PHL} are the same as t_{pd} .
- G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device		Package Type	-	Pins	-		Lead finish/ Ball material		Op Temp (°C)	-	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AUP2G04DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H45, H4F)	Samples
SN74AUP2G04DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	H4	Samples
SN74AUP2G04DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	H4	Samples
SN74AUP2G04YFPR	ACTIVE	DSBGA	YFP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HCN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

24-Jul-2020

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP2G04DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP2G04DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74AUP2G04DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP2G04DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP2G04YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

24-Jul-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP2G04DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74AUP2G04DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74AUP2G04DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP2G04DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP2G04YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0

DRY 6

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

DRY0006A

PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

DRY0006A

EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

DRY0006A

EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

^{4.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

YFP0006

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

YFP0006

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

YFP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DSF0006A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

DSF0006A

EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.