SGMOP07E 600kHz, Low Noise, High Voltage, Precision Operational Amplifier

GENERAL DESCRIPTION

The SGMOP07E is a low noise, low offset voltage and high voltage operational amplifier, which can be designed into a wide range of applications. The SGMOP07E has a high gain-bandwidth product of 600kHz, a slew rate of $3V/\mu s$ and a quiescent current of 0.75mA at wide power supply range.

The SGMOP07E is designed to provide optimal performance in low noise systems. It provides rail-to-rail output swing into heavy loads.

The single SGMOP07E is available in a Green SOIC-8 package. It is specified over the extended -40° C to $+125^{\circ}$ C temperature range.

FEATURES

- Rail-to-Rail Output
- Low Bias Current: ±1nA (TYP)
- High Open-Loop Gain: 130dB at $V_s = \pm 15V$
- High PSRR: 135dB
- Gain-Bandwidth Product: 600kHz
- Low Noise: 8.5nV/ \sqrt{Hz} at 1kHz
- Supply Voltage Range: 3.6V to 36V or ±1.8V to ±18V
- Input Common Mode Voltage Range: (-V_S) + 1.5V to (+V_S) - 2V
- Low Quiescent Current: 0.75mA (TYP)
- -40°C to +125°C Operating Temperature Range
- Available in a Green SOIC-8 Package

APPLICATIONS

Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification

SGMOP07E

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGMOP07E	SOIC-8	-40°C to +125°C	SGMOP07EXS8G/TR	SGM OP07EXS8 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code
Date Code - Week

- Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	40V
Input Common Mode Voltage Range	
(-V _S) -	- 0.3V to (+V _S) + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2000V
MM	250V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	3.6V to 36V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}C$, $V_S = \pm 5V$ to $\pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$ and $R_L = 2k\Omega$ connected to 0V, Full = -40°C to +125°C, unless otherwise noted.)

noted.) PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
Input Characteristics		•						
langut Offerst Melteres	V		+25°C		35	150		
Input Offset Voltage	Vos		Full			220	μV	
Innut Rice Current			+25°C		±1	±12	~ ^	
Input Bias Current	I _B Full			±45	nA			
Input Offset Current			+25°C		±1	±12	nA	
input Onset Gurrent	I _{os}		Full			±35		
Input Common Mode Voltage Range	V _{CM}		Full	(-V _s) + 1.5		(+V _S) - 2	V	
Common Mode Rejection Ratio	CMRR	(-V _S) + 1.5V ≤ V _{CM} ≤ (+V _S) - 2V	+25°C	120	140		dB	
	Civilitit	(vs) · 1.0v = vcm = (· vs) 2v	Full	115			uD	
		$V_{s} = \pm 5V, V_{OUT} = \pm 2.5V, R_{L} = 10k\Omega$	+25°C	115	135			
			Full	112				
		$V_{s} = \pm 15V, V_{OUT} = \pm 10V, R_{L} = 10k\Omega$	+25°C	120	135			
Open-Loop Voltage Gain	A _{OL}		Full	117			dB	
open Leop venage dani	, OL	$V_{s} = \pm 5V, V_{OUT} = \pm 2.5V, R_{L} = 2k\Omega$	+25°C	110	124		uD	
			Full	106				
		V _s = ±15V, V _{OUT} = ±10V, R _L = 2kΩ	+25°C	120	130		-	
		$v_{\rm S} = \pm 10^{\circ}$, $v_{\rm OU1} = \pm 10^{\circ}$, $n_{\rm L} = 2022$	Full	112				
Input Offset Voltage Drift	$\Delta V_{\text{OS}} / \Delta T$		Full		0.3		µV/°C	
Output Characteristics								
	V _{OUT}	V _S = ±15V, R _L = 10kΩ	+25°C		90	120	- mV	
Output Voltage Swing from Rail		V5 - ±10V, 1(L - 10K22	Full			165		
		$V_s = \pm 15V, R_L = 2k\Omega$	+25°C		450	600		
			Full			820		
Output Short-Circuit Current	I _{sc}	V _S = ±15V	+25°C	±21	±34		mA	
Power Supply								
Operating Voltage Range	Vs		Full	3.6		36	V	
Quiescent Current	Iq	I _{OUT} = 0mA	+25°C		0.75	0.9	mA	
	-0		Full			1		
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 3V$ to $38V$	+25°C	123	135		dB	
	_		Full	120				
Dynamic Performance	1			1		Т	1	
Gain-Bandwidth Product	GBP	$V_{OUT} = 100 m V_{P-P}, C_L = 10 p F$	+25°C		600		kHz	
Slew Rate	SR		+25°C		3		V/µs	
Settling Time to 0.1%	ts	V _{IN} = 1V Step, G = +1	+25°C		3.5		μs	
Overload Recovery Time		$V_{IN} \times G = V_S$	+25°C		1.5		μs	
Phase Margin	φο	$V_{OUT} = 100 m V_{P-P}, C_L = 10 p F$	+25°C		60		٥	
Total Harmonic Distortion + Noise	THD+N	V_{IN} = 1 V_{RMS} , G = +1, f = 1kHz	+25°C		0.0008		%	
Noise								
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		300		nV_{P-P}	
Input Voltage Noise Density	en	f = 1kHz	+25°C		8.5		nV/√Hz	
Input Current Noise Density	i _n	f = 1kHz	+25°C		1.5		pA/√Hz	

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = ±15V and R_L = 2k Ω , unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = \pm 15V$ and $R_L = 2k\Omega$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15V and R_L = 2k Ω , unless otherwise noted.

Time (5s/div)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = ±15V and R_L = 2k Ω , unless otherwise noted.

APPLICATION NOTES

Power Supply Bypassing and Layout

The SGMOP07E operates from either a single 3.6V to 36V supply or dual ±1.8V to ±18V supplies. For singlesupply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. A 10µF tantalum capacitor can be added for better performance.

Good PCB layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

Figure 1. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGMOP07E circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

Differential Amplifier

The circuit shown in Figure 2 performs the difference function. If the resistor ratios are equal ($R_4/R_3 = R_2/R_1$), then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

Instrumentation Amplifier

The circuit in Figure 3 performs the same function as that in Figure 2 but with a high input impedance.

Figure 3. Instrumentation Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 4 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

Figure 4. Active Low-Pass Filter

Page

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2017) to REV.A

	_
Changed from product preview to production dataAl	

PACKAGE OUTLINE DIMENSIONS

SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550 0.510	0.053	0.061	
b	0.330		0.013 0.006	0.020	
С	0.170	0.250		0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002