SGM7SZ86 Small Logic Two-Input Exclusive-OR Gate

GENERAL DESCRIPTION

The SGM7SZ86 is a single two-input exclusive-OR gate from SGMICRO's Small Logic series. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 6V, independent of V_{CC} operating voltage.

The SGM7SZ86 is available in Green SOT-23-5 and SC70-5 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Ultra-High Speed: t_{PD} = 4.2ns (TYP) into 50pF at V_{CC} = 3.3V
- High Output Drive: ±24mA at V_{cc} = 3V
- Broad V_{cc} Operating Range: 1.65V to 5.5V
- Matches Performance of LCX Operated at V_{cc} = 3.3V
- Power Down High-Impedance Inputs/Output
- Over-Voltage Tolerance Inputs Facilitate 5V to 3V Translation
- Available in Green SOT-23-5 and SC70-5 Packages

LOGIC SYMBOL

FUNCTION TABLE

INPUTS		OUTPUT	
Α	В	Y	
L	L	L	
L	Н	Н	
Н	L	Н	
Н	Н	L	

Y = A ⊕ B H = HIGH Logic Level L = LOW Logic Level

PACKAGE/ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM7SZ86	SC70-5	-40°C to +85°C	SGM7SZ86YC5G/TR	SFCXX	Tape and Reel, 3000
	SOT-23-5	-40°C to +85°C	SGM7SZ86YN5G/TR	SFDXX	Tape and Reel, 3000

NOTE: Order number and package marking are defined as the follow:

ORDER NUMBER SGM7SZ86 X X G / TR Tape and Reel Green Product Package Type N5 SOT-23-5 C5 SC70-5 Operating Temperature Range Y -40°C to +85°C

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} 0.5V t	to 6.0V
DC Input Voltage, V _{IN} 0.5V	to 6.0V
DC Output Voltage, V _{OUT} 0.5V	to 6.0V
DC Input Diode Current, I _{IK}	
(V _{IN} < -0.5V)	-50mA
DC Output Diode Current, IOK	
(V _{OUT} < -0.5V)	-50mA
DC Output Current, I _{OUT}	±50mA
DC V _{CC} or Ground Current, I _{CC} or I _{GND}	±50mA
Operating Temperature Range40°C to	+85°C
Junction Temperature	. 150°C
Storage Temperature65°C to -	+150°C
Lead Temperature (Soldering, 10sec)	260°C

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MARKING INFORMATION

For example: SFCCC (2012, March)

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

PIN	NAME	FUNCTION		
1	А	nput. Unused input must be held high or low. It may not float.		
2	В	Input. Unused input must be held high or low. It may not float.		
3	GND	Ground.		
4	Y	Output.		
5	V _{CC}	Power Supply.		

Small Logic Two-Input Exclusive-OR Gate

ELECTRICAL CHARACTERISTICS

DADAMETED	SYMDOL	CONDITIONS		V AA	T _A = +25℃				
PARAMETER	SYMBOL			V _{cc} (V)	MIN	TYP	MAX		
GENERAL		·							
Power Supply Range					1.65		5.50	V	
Supply Voltage Data Retention	V _{CC}				1.50		5.50	V	
Input Voltage	V _{IN}				0.00		5.50	V	
Output Voltage	V _{OUT}				0.00		V _{CC}	V	
				1.8, 2.5 ± 0.2	0		20		
Input Rise and Fall Times	t _r , t _f			3.3 ± 0.3	0		10	ns/V	
				5.0 ± 0.5	0		5		
DC PERFORMANCE									
HIGH Level Input Voltage	VIH			1.65 to 1.95	$0.75V_{CC}$				
Thom Level input voltage	VIH			2.30 to 5.50	$0.75V_{CC}$			- V	
LOW Level Input Voltage	VIL			1.65 to 1.95			$0.2V_{CC}$	v	
	VIL			2.30 to 5.50			$0.2V_{CC}$	v	
	V _{OH}	V _{IN} = V _{IH} , V _{IL}		1.65		1.65			
			I _{OH} = -100μA	1.80		1.80			
				2.30		2.30			
				3.00		3.00			
				4.50		4.50			
HIGH Level Output Voltage			I _{OH} = -4mA	1.65		1.55			
			I _{ОН} = -8mA	2.30		2.18			
			I _{OH} = -16mA	3.00		2.80			
			I _{OH} = -24mA	3.00		2.70			
			I _{ОН} = -32mA	4.50		4.20			
				1.65		0.00		-	
				1.80		0.00			
			I _{OL} = 100μA	2.30		0.00			
				3.00		0.00			
	V	$V_{IN} = V_{IH}$, or		4.50		0.00			
LOW Level Output Voltage	V _{OL}	$V_{IN} = V_{IL}$	I _{OL} = 4mA	1.65		0.07		V	
			I _{OL} = 8mA	2.30		0.10]	
			I _{OL} = 16mA	3.00		0.17		1	
			I _{OL} = 24mA	3.00		0.24		1	
			I _{OL} = 32mA	4.50		0.28		1	
Input Leakage Current	I _{IN}	V _{IN} = 5.5V, GN	ND	0 to 5.5		±0.1		μA	
Power Off Leakage Current	I _{OFF}	V _{IN} or V _{OUT} = 5.5V		0		0.10		μA	
Quiescent Supply Current	I _{CC}	V _{IN} = 5.5V, GND		1.65 to 5.5		0.10		μA	

Small Logic Two-Input Exclusive-OR Gate

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	L CONDITIONS		T _A = +25℃		UNITS	
FARAWETER	STWBOL			MIN	TYP	MAX	
AC PERFORMANCE				-			
Propagation Delay	t _{PHL} , t _{PLH}	V _{CC} = 1.65V	$C_L = 15pF,$ $R_L = 1M\Omega,$ Figure 1, Figure 2		10.3		ns
		V _{CC} = 1.80V			8.3		
		V_{CC} = 2.50V ± 0.20V			4.9		
		V_{CC} = 3.30V ± 0.30V			3.7		
		$V_{CC} = 5.00V \pm 0.50V$			2.8		
		V_{CC} = 3.30V ± 0.30V	$C_L = 50 pF$,		4.2		
		V _{CC} = 5.00V ± 0.50V	$R_{L} = 500\Omega$, Figure 1, Figure 2		3.1		
Input Capacitance	C _{IN}	V _{CC} = 0V			4.0		pF
Power Dissipation Capacitance ⁽²⁾	C _{PD}	V _{CC} = 3.30V	Figure 2		17.0		рF
		V _{CC} = 5.00V	- Figure 3		19.0		

NOTES:

1. Unused inputs must be held HIGH or LOW. They may not float.

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle (see Figure 3). C_{PD} is related to dynamic operating current I_{CCD} by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC,Static})$.

TEST CIRCUITS

 C_L includes load and stray capacitance. Input PRR = 1.0MHz, t_W = 500ns.

Figure 2. AC Waveforms

Input = AC Waveform; $t_r = t_f = 1.8ns$; PRR = 10MHz; Duty Cycle = 50%.

PACKAGE OUTLINE DIMENSIONS

SC70-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65	0.65 TYP		6 TYP	
e1	1.300 BSC		0.051 BSC		
L	0.525 REF		0.021	REF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS

SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037 BSC		
e1	1.900	BSC	0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	