Application Note: AN_SY8511

High Efficiency, 200kHz, 100V Input, 0.6A Asynchronous Step Down Regulator

General Description

SY8511 is a high efficiency, current mode adaptive constant off time controlled asynchronous step-down DC/DC converter capable of delivering 0.6A output current. The SY8511 operates over a wide input voltage range from 4.5V to 100V and integrates main switch with very low $R_{DS(ON)}$ to minimize the conduction loss.

Ordering Information

Ordering Number	Package Type	Note
SY8511ADC	TSOT23-6	

Features

- Low $R_{DS(ON)}$ for Internal N-channel Power FET:1 Ω
- 4.5-100V Input Voltage Range
- 0.6A Output Current Capability
- 200kHz Pseudo Constant Switching Frequency
- Internal Soft-start Limits the Inrush Current
- Hic-cup Mode Output Short Circuit Protection
- EN ON/OFF Control with Accurate Threshold
- Cycle by Cycle Peak Current Limit
- 0.6V±1 % Reference Voltage
- TSOT23-6 Package

Applications

- Non-isolated Telecommunication Buck Regulator
- Secondary High Voltage Post Regulator
- Automotive Systems
- Electric Bicycle

Typical Application

Figure1. Schematic Diagram

Figure2. Efficiency vs. Output Current

Pinout (top view)

Top Mark: fKxyz (device code: fK, x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Pin Description
BS 1 GND 2		Boot-strap pin. Supply high side gate driver. Connect a 0.1 µF ceramic capacitor
		between BS and LX pin. Ground pin.
GILD	2	Output feedback pin. Connect this pin to the center point of the output resistor
FB	3	divider (as shown in figure 1) to program the output voltage: $V_{OUT}=0.6 \times (1+R1/R2).$
EN	4	Enable control. Pull high to turn on. Do not float.
IN	5	Input pin. Decouple this pin to GND pin with at least a 1 µF ceramic capacitor.
LX	6	Inductor pin. Connect this pin to the switching node of the inductor.

Function Block

Figure3. Block Diagram

Absolute Maximum Ratings (Note 1)

0	
Supply Input Voltage	0.3V to 100V
BS-LX Voltage	0.3V to 6V
FB, EN, LX Voltage	0.3V to $V_{IN} + 0.3V$
Power Dissipation, $P_D @ T_A = 25 $ $C TSOT 23-6$	
Package Thermal Resistance (Note 2)	
JA	100 °C/W
JC	25 °C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	260 ℃
Storage Temperature Range	
Dynamic LX Voltage in10ns Duration	IN+3V to GND-5V

Recommended Operating Conditions (Note 3)

Supply Input Voltage	4.5V to 100V
Junction Temperature Range	
Ambient Temperature Range	
Ambient Temperature Kange	40 C to 85 C

Electrical Characteristics

 $(V_{IN} = 20V, V_{OUT} = 12V, L = 6.8 \mu H, C_{OUT} = 10 \mu F, T_A = 25 \text{ °C}, I_{OUT} = 0.1 \text{ A}, \text{ unless otherwise specified.})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		4.5		100	V
Quiescent Current	I _Q	$I_{OUT}=0, V_{FB}=V_{REF}\times 105\%$		100		μΑ
Shutdown Current	I _{SHDN}	EN=0		9	14	μΑ
Feedback Reference	V _{REF}		0.594	0.6	0.606	v
Voltage			0.394	0.0	0.000	v
FB Input Current	I _{FB}	V _{FB} =V _{IN}	-50		50	nA
Power FET RON	R _{DS(ON)1}			1		Ω
Power FET Peak Current	I		0.9		1.3	А
Limit	I _{LIM,TOP}		0.9		1.5	Л
EN Rising Threshold	V _{ENH}		1.14	1.2	1.26	V
EN Falling Threshold	V _{ENL}		0.94	1	1.06	V
Input UVLO Threshold	V _{UVLO}				4.5	V
Input UVLO Hysteresis	V _{UVLO, HYS}			110		mV
Switching Frequency	F _{SW}			200		kHz
Switching Frequency			-20		20	%F _{SW}
Accuracy	F _{SW,ACC}		-20		20	701 SW
Min ON Time	t _{ON,MIN}			80		ns
Min Off Time	t _{OFF,MIN}			80		ns
Soft-start Time	t _{SS}			800		μs
Thermal Shutdown	T _{SD}			150		C
Temperature	1 SD			150		C
Thermal Shutdown	T _{HYS}			15		C
Hysteresis	1 HYS			15		C

Note 1: Stresses beyond "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a two-layer Silergy Evaluation Board. Note 3: The device is not guaranteed to function outside its operating conditions.

Typical Performance Characteristics

Time (4 µs/div)

Time (400µs/div)

Time (4 µs/div)

Time (400µs/div)

AN_SY8511

Time (4ms/div)

Time (10ms/div)

Time (2ms/div)

Time (20ms/div)

Time (2ms/div)

(V_{IN} =48V, V_{OUT} =5V, I_{O} =0.6A~Short)

Time (20ms/div)

Operation

The SY8511 is a high efficiency asynchronous step down DC/DC regulator capable of delivering 0.6A output current. The device adopts current mode adaptive constant off time control. The SY8511 operates over a wide input voltage range from 4.5V to 100V and integrates main switch with very low $R_{DS(ON)}$ to minimize the conduction loss.

Low output voltage ripple and small external inductor and capacitor sizes are achieved at 200kHz switching frequency.

Applications Information

Because of the high integration in the SY8511, the application circuit based on this IC is rather simple. Only the input capacitor C_{IN} , the output capacitor C_{OUT} , the output inductor L_1 and the feedback resistors (R_1 and R_2) need to be selected for the target applications.

Feedback Resistor Divider R1 and R2

Choose R_1 and R_2 to program the proper output voltage. To minimize the power consumption under light load, it is desirable to choose large resistance values for both R_1 and R_2 . A value between $10k\Omega$ and $1M\Omega$ is highly recommended for both resistors. If V_{OUT} is 1.2V, R_1 =100k Ω is chosen, then using the following equation, R_2 can be calculated to be 100k Ω :

Input Capacitor CIN

The ripple current through the input capacitor is calculated as:

$$I_{\text{CIN}_{\text{RMS}}} = I_{\text{OUT}} \times \sqrt{D(1-D)}$$
.

To minimize the potential noise problem, we place a typical X5R or a better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by C_{IN} and IN/GND pins. In this case, a 1 μ F low ESR ceramic capacitor is recommended.

Output Capacitor Cout

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For most applications, a X5R or a better grade ceramic capacitor larger than $22 \,\mu$ F capacitance can work well. The capacitance derating with DC voltage must be considered.

Output Inductor L

There are several considerations in choosing this inductor.

 Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{\text{OUT}}(1 - V_{\text{OUT}}/V_{\text{IN,MAX}})}{F_{\text{SW}} \times I_{\text{OUT,MAX}} \times 40\%}$$

Where F_{SW} is the switching frequency and $I_{OUT,MAX}$ is the maximum load current.

The SY8511 is quite tolerant of different ripple current amplitudes. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

Isat, min > Iout, max +
$$\frac{V_{OUT}(1-V_{OUT}/V_{IN,MAX})}{2 \times F_{SW} \times L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<50m Ω to achieve a good overall efficiency.

Enable Operation

Pulling the EN pin low (<0.94V) will shut down the device. During the shutdown mode, the SY8511 shutdown current will drop to lower than 10μ A. Driving the EN pin high (>1.26V) will turn on the IC again.

It is not recommended to connect EN and IN directly. A resistor in a range of 1kohm to 1Mohm should be used if EN is pulled high by IN.

External Bootstrap Capacitor

This capacitor provides the gate driver voltage for internal high side MOSEFET. A 100nF low ESR ceramic capacitor connected between the BS pin and the LX pin is recommended.

Load Transient Considerations

The SY8511 integrates the compensation components to achieve good stability and fast transient responses. In some application, adding a 47pF ceramic capacitor in parallel with R_1 may further speed up the load transient responses, thus it is recommended for applications with large load transient step requirements.

Layout Design

The layout design of the SY8511 is relatively simple. For the best efficiency and to minimize noise problem, the following components should be placed close to the IC: C_{IN} , L_1 , D_1 , R_1 and R_2 .

- 1) It is desirable to maximize the PCB copper area connected to the GND pin to achieve the best thermal and noise performance. If the board space allows, a ground plane will be highly desirable.
- 2) C_{IN} must be close to the IN and GND pins. The loop area formed by C_{IN} and GND must be minimized.
- 3) The PCB copper area associated with the LX pin must be minimized to avoid the potential noise problem.
- 4) The components R_1 and R_2 and the trace connected to the FB pin must not be adjacent to the LX node on the PCB layout to avoid the noise problem.
- 5) If the system chip interfacing with the EN pin has a high impedance state at the shutdown mode and the IN pin is connected directly to a power source such as a Li-Ion battery, it is desirable to add a pull down $1M\Omega$ resistor between the EN and GND pins to prevent the noise from falsely turning on the regulator at the shutdown mode.

Figure4. PCB Layout Suggestion

TSOT23-6 Package Outline & PCB Layout

2. Carrier Tape & Reel specification for packages

Package types	Tape width	Pocket	Reel size	Trailer	Leader length	Qty per
	(mm)	pitch(mm)	(Inch)	length(mm)	(mm)	reel
TSOT23-6	8	4	7''	400	160	3000

3. Others: NA