SGM2225 800mA, High Voltage, Low Noise and Low Dropout Voltage Regulator

GENERAL DESCRIPTION

The SGM2225 is a high voltage, low noise and low dropout voltage linear regulator. It is capable of supplying 800mA output current with typical dropout voltage of only 450mV. The operating input voltage range is from 3.6V to 36V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SGM2225 has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

The SGM2225 is available in Green SOT-223-3, SOT-89-3, SOIC-8, TDFN- $3\times3-8L$ and TO-263-5B packages. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Wide Operating Input Voltage Range: 3.6V to 36V
- Fixed Outputs of 1.8V, 2.5V, 3.3V, 5.0V and 12V
- Adjustable Output from 1.8V to 15V
- Output Voltage Accuracy: ±1.5% at +25°C
- Low Dropout Voltage: 450mV (TYP) at 800mA
- Current Limiting and Thermal Protection
- Excellent Load and Line Transient Responses
- With Output Automatic Discharge
- No-Load Stability
- -40°C to +125°C Operating Temperature Range
- Available in Green SOT-223-3, SOT-89-3, SOIC-8, TDFN-3×3-8L and TO-263-5B Packages

APPLICATIONS

Cellular Telephones Palmtop Computers High-Efficiency Linear Power Supplies Portable Equipment Battery-Powered Systems

Figure 1. Fixed Voltage Typical Application Circuit

TYPICAL APPLICATIONS

Figure 3. Low Noise Regulator (Adjustable Voltage Version)

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2225-1.8	SOT-89-3	-40°C to +125°C	SGM2225-1.8XK3G/TR	RB8XX	Tape and Reel, 1000
SGM2225-2.5	SOT-89-3	-40°C to +125°C	SGM2225-2.5XK3G/TR	025XX	Tape and Reel, 1000
SGM2225-3.3	SOT-89-3	-40°C to +125°C	SGM2225-3.3XK3G/TR	R8CXX	Tape and Reel, 1000
SGM2225-5.0	SOT-89-3	-40°C to +125°C	SGM2225-5.0XK3G/TR	R8DXX	Tape and Reel, 1000
SGM2225-1.8	SOT-223-3	-40°C to +125°C	SGM2225-1.8XKC3G/TR	RB9 XXXXX	Tape and Reel, 2500
SGM2225-2.5	SOT-223-3	-40°C to +125°C	SGM2225-2.5XKC3G/TR	SWG XXXXX	Tape and Reel, 2500
SGM2225-3.3	SOT-223-3	-40°C to +125°C	SGM2225-3.3XKC3G/TR	R8E XXXXX	Tape and Reel, 2500
SGM2225-5.0	SOT-223-3	-40°C to +125°C	SGM2225-5.0XKC3G/TR	R8F XXXXX	Tape and Reel, 2500
SGM2225-12	SOT-223-3	-40°C to +125°C	SGM2225-12XKC3G/TR	R16 XXXXX	Tape and Reel, 2500
SGM2225-2.5	SOIC-8	-40°C to +125°C	SGM2225-2.5XS8G/TR	SGM 222525XS8 XXXXX	Tape and Reel, 4000
SGM2225-3.3	SOIC-8	-40°C to +125°C	SGM2225-3.3XS8G/TR	SGM R90XS8 XXXXX	Tape and Reel, 4000
SGM2225-5.0	SOIC-8	-40°C to +125°C	SGM2225-5.0XS8G/TR	SGM R91XS8 XXXXX	Tape and Reel, 4000
SGM2225-ADJ	SOIC-8	-40°C to +125°C	SGM2225-ADJXS8G/TR	SGM 2225ADJXS8 XXXXX	Tape and Reel, 4000
SGM2225-1.8	TDFN-3×3-8L	-40°C to +125°C	SGM2225-1.8XTDB8G/TR	SGM SVPDB XXXXX	Tape and Reel, 4000
SGM2225-2.5	TDFN-3×3-8L	-40°C to +125°C	SGM2225-2.5XTDB8G/TR	SGM 026DB XXXXX	Tape and Reel, 4000
SGM2225-3.3	TDFN-3×3-8L	-40°C to +125°C	SGM2225-3.3XTDB8G/TR	SGM R92DB XXXXX	Tape and Reel, 4000
SGM2225-5.0	TDFN-3×3-8L	-40°C to +125°C	SGM2225-5.0XTDB8G/TR	SGM R93DB XXXXX	Tape and Reel, 4000
SGM2225-ADJ	TDFN-3×3-8L	-40°C to +125°C	SGM2225-ADJXTDB8G/TR	SGM R15DB XXXXX	Tape and Reel, 4000

SGM2225

PACKAGE/ORDERING INFORMATION (continued)

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2225-ADJ	TO-263-5B	-40°C to +125°C	SGM2225-ADJXO5G/TR	SGMR94 XO5 XXXXX	Tape and Reel, 800

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code, Trace Code and Vendor Code.

SOT-223-3/SOIC-8/TDFN-3×3-8L/TO-263-5B

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range, VIN	40V to +40V
EN to GND	-0.3V to V _{IN} + 0.3V
Package Thermal Resistance	
SOT-89-3, θ _{JA}	75°C/W
SOT-89-3, θ _{JC}	84°C/W
SOT-223-3, θ _{JA}	95°C/W
SOT-223-3, θ _{JC}	50°C/W
SOIC-8, θ _{JA}	95°C/W
SOIC-8, θ _{JC}	41°C/W
TDFN-3×3-8L, θ _{JA}	92°C/W
TDFN-3×3-8L, θ _{JC}	46°C/W
TO-263-5Β, θ _{JA}	45°C/W
TO-263-5B, θ _{JC}	42°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	6000V
CDM	
-	

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range, V _{IN}	3.6V to 36V
Adjustable Output Voltage Range	1.8V to 15V
Input Effective Capacitance, C _{IN}	0.5µF (MIN)
Output Effective Capacitance, COUT	1µF to 10µF
C _{BYP} Effective Capacitance	10nF
C _{FF} Effective Capacitance	4.7pF
Operating Junction Temperature Range	-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN						
SOT-89-3	SOT- 223-3	SOIC-8	TDFN- 3×3-8L	TO- 263-5B	NAME	FUNCTION	
1	3	3	3, 4	4	OUT	Regulator Output Pin. It is recommended to use an output capacitor with effective capacitance in the range of 1μ F to 10μ F to ensure stability. Pins 3 and 4 must be tied together for TDFN-3×3-8L package.	
2	2	5-8	7	3	GND	Ground. Pins 5 to 8 are internally connected for SOIC-8 package.	
3	1	2	1, 2	2	IN	Input Supply Voltage Pin. It is recommended to use a 1μ F or larger ceramic capacitor from IN pin to ground to get good power supply decoupling.	
-	_	1	8	1	EN	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator.	
		4	Ι	I	BYP	Reference Bypass Pin (fixed voltage version only). Bypass with an external capacitor C_{BYP} can reduce output noise to very low level.	
-	-	4	6	5	ADJ	Feedback Voltage Input Pin (adjustable voltage version only). Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.	
-	_	-	5	-	NC	No Connection.	
-	_	_	6	_	NC	No Connection (fixed voltage version only).	
-	-	-	Exposed Pad	-	GND	Exposed Pad. Exposed pad is internally connected to GND. Connect it to a large ground plane to maximize thermal performance; this pad is not an electrical connection point.	

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOM)} + 1V, I_{OUT} = 100\mu A$ and $C_{OUT} = 2.2\mu F$, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values are at $T_J = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS		
Input Voltage Range	V _{IN}	T _J = +25℃	3.6		36	V		
		Variation from nominal V _{OUT} , T_J = +25°C	-1.5		1.5			
Output Voltage Accuracy	V _{OUT}	Variation from nominal V _{OUT}	-2		2	- %		
2.4		T _J = +25°C	1.182	1.2	1.218	. v		
Reference Voltage	V _{REF}		1.176		1.224	V		
	ΔVout	$V_{IN} = V_{OUT(NOM)} + 1V$ to 36V, $T_J = +25^{\circ}C$		0.0003	0.003			
Line Regulation	$\overline{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{IN} = V_{OUT(NOM)} + 1V$ to 36V			0.005	%/V		
Leed Demoletien	ΔVout	I _{OUT} = 100μA to 800mA, T _J = +25°C		0.1	0.3	0/		
Load Regulation	Vout	I _{OUT} = 100µA to 800mA			0.4	%		
		$I_{OUT} = 50 \text{mA}, T_{J} = +25^{\circ}\text{C}$		30	38			
		I _{OUT} = 50mA			55			
Dreme (1)	N/	I _{OUT} = 200mA, T _J = +25°C		115	150	····) (
Dropout Voltage ⁽¹⁾	V _{DROP}	I _{OUT} = 200mA			210	mV		
		I _{OUT} = 800mA, T _J = +25°C		450	610			
		I _{OUT} = 800mA			850	1		
Output Current Limit	I _{LIMIT}	$V_{OUT} = 90\% \times V_{OUT(NOM)}, T_J = +25^{\circ}C$	820	1100		mA		
Short-Circuit Current	I _{SHORT}	$V_{IN} = V_{EN} = 3V, V_{OUT} = 0V$		230		mA		
		$V_{EN} \ge 1.6V$, no load, $T_J = +25^{\circ}C$		80	104	μΑ		
		V _{EN} ≥ 1.6V, no load			112			
		$V_{EN} \ge 1.6V$, $I_{OUT} = 100\mu A$, $T_{J} = +25^{\circ}C$		80	104			
Oracum d Dire Ourreast		V _{EN} ≥ 1.6V, I _{OUT} = 100µA			112			
Ground Pin Current	Ι _Q	$V_{EN} \ge 1.6V$, $I_{OUT} = 50$ mA, $T_J = +25$ °C		220	280			
		V _{EN} ≥ 1.6V, I _{OUT} = 50mA			290			
		$V_{EN} \ge 1.6V, I_{OUT} = 800mA, T_{J} = +25^{\circ}C$		1950	2250			
		V _{EN} ≥ 1.6V, I _{OUT} = 800mA			2350	1		
Ground Pin Quiescent Current	1	$V_{EN} \le 0.4V$ (shutdown), $T_J = +25^{\circ}C$		6.5	8	μA		
Glound Fin Quescent Current	I _{Q(GND)}	$V_{EN} \le 0.4V$ (shutdown)			12			
Enable Input Logic Low Voltage	V	V _{EN} = logic low (regulator shutdown)			0.4	v		
Enable Input Logic-Low Voltage	V _{ENL}	V_{EN} = logic high (regulator enabled)	1.6			v		
	I _{ENL}	V _{ENL} ≤ 0.4V			1			
Enable Input Current	I _{ENH}	V _{ENH} ≥ 1.6V			1	μA		
Power Supply Rejection Ratio	PSRR	f =1kHz, V _{OUT} = 2.5V, I _{OUT} = 50mA		75		dB		
Output Voltage Noise	e _n	V_{OUT} = 2.5V, I_{OUT} = 50mA, C_{BYP} = 0 μ F		500		nV/√Hz		
Output Voltage Temperature Coefficient	$\frac{\Delta V_{\text{OUT}}}{\Delta T_{\text{J}} \times V_{\text{OUT}}}$			40		ppm/°C		
Thermal Shutdown Temperature	T _{SHDN}			155		°C		
Thermal Shutdown Hysteresis	ΔT_{SHDN}			25		°C		

NOTE:

1. The dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls to 95% × $V_{OUT(NOM)}$.

TYPICAL PERFORMANCE CHARACTERISTICS

 T_J = +25°C, C_{OUT} = 2.2µF and I_{OUT} = 100µA, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, C_{OUT} = 2.2µF and I_{OUT} = 100µA, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, C_{OUT} = 2.2 μF and I_{OUT} = 100 $\mu A,$ unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, C_{OUT} = 2.2µF and I_{OUT} = 100µA, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAMS

Figure 4. Internal Block Diagram of Fixed Output Voltage (SOT-89-3 and SOT-223-3 Versions)

Figure 5. Internal Block Diagram of Low Noise Fixed Regulator (SOIC-8 Version)

APPLICATION INFORMATION

The SGM2225 is a high voltage, low noise and low dropout LDO and provides 800mA output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2225 useful in a variety of applications. The SGM2225 provides protection functions for output overload, output short-circuit condition and overheating.

The SGM2225 provides an EN pin as an external chip enable control to enable/disable the device.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor should be placed as close as possible to the IN pin for ensuring the device stability. 1μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output decoupling capacitor should be placed as close as possible to the OUT pin. 2.2µF or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2225 can remain stable is 1µF. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Additionally, C_{OUT} with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

Noise Bypass Capacitor (C_{BYP})

In noise sensitive applications, a bypass capacitor can be connected to the BYP pin (SOIC-8 package only) to reduce the noise of output voltage. A 10nF ceramic capacitor is recommended in application.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1100mA (TYP). When the OUT pin

is shorted to ground, the short-circuit protection will limit the output current to 230mA (TYP).

Thermal Shutdown

The SGM2225 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2225 will be in shutdown state and remain in this state until the die temperature decreases to $+130^{\circ}$ C.

Adjustable Regulator

The output voltage of the SGM2225-ADJ can be adjusted from 1.8V to 15V. The ADJ pin will be connected with two external resistors as shown in Figure 7, the output voltage is determined by the following equation:

$$V_{\text{OUT}} = V_{\text{REF}} \times \left(1 + \frac{R_1}{R_2}\right)$$
(1)

where:

 V_{OUT} is output voltage and V_{FB} is the internal voltage reference, V_{REF} = 1.2V.

Figure 7. Adjustable Output Voltage Application

 R_1 and R_2 can be calculated for any output voltage range using equation 1 and R_1 is recommended to be less than $470k\Omega.$

Enable Operation

The EN pin of the SGM2225 is used to enable/disable the device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 0.4V, the device is in shutdown state. There is no current flowing from IN to OUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through a resistor.

When the EN pin voltage is higher than 1.6V, the device is in active state. The output voltage is regulated to expected value and the automatic discharge transistor is turned off.

APPLICATION INFORMATION (continued)

No-Load Stability

The SGM2225 can maintain stability without output load (except internal voltage divider).

Input Power Supply

The input power supply range is from 3.6V to 36V. V_{IN} must be larger than ($V_{OUT} + V_{DROP}$) in application. The input ceramic capacitor must be placed as close as possible to the IN pin, this C_{IN} can help improve the output noise performance of LDO.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2225. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much and the operating junction temperature exceeds +155°C, the OTP circuit starts the thermal shutdown function and turns the pass element off.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all

conditions. To guarantee reliable operation, the junction temperature of the SGM2225 must not exceed +125°C.

The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction temperature and ambient temperature. The maximum power dissipation can be approximated using the following equation:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$
(2)

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction -to-ambient thermal resistance.

Layout Guidelines

To get good PSRR, low output noise and high transient response performance, the input and output bypass capacitors must be placed as close as possible to the IN pin and OUT pin separately. V_{IN} and V_{OUT} had better use separate ground planes and these ground planes are single point connected to the GND pin.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

APRIL 2022 – REV.A.1 to REV.A.2	Page
Added SGM2225-2.5XK3G/TR, SGM2225-2.5XS8G/TR and SGM2225-2.5XTDB8G/TR versions	All
Updated Electrical Characteristics section	5
MARCH 2021 – REV.A to REV.A.1	Page
Added SGM2225-2.5XKC3G/TR version	All
Updated Electrical Characteristics section	5
Changes from Original (MARCH 2021) to REV.A	Page
Changed from product preview to production data	All

SOT-89-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550) REF	0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	3.000 TYP		0.118	3 TYP	
L	0.900	1.200	0.035	0.047	

NOTES:

1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

SOT-223-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	3.300	3.700	0.130	0.146	
E1	6.700	7.300	0.264	0.287	
е	2.300 BSC		0.091	BSC	
L	0.750		0.030		
θ	0°	10°	0°	10°	

NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
с	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.27 BSC		0.050	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TDFN-3×3-8L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	3 REF	0.008	REF	
D	2.900	3.100	0.114	0.122	
D1	2.200	2.400	0.087	0.094	
E	2.900	3.100	0.114	0.122	
E1	1.400	1.600	0.055	0.063	
k	0.200) MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.650 TYP		0.026	6 TYP	
L	0.375	0.575	0.015	0.023	

NOTE: This drawing is subject to change without notice.

TO-263-5B

Cumula al	Di	mensions In Millimet	ers	
Symbol	MIN	MOD	MAX	
A	4.40	4.57	4.70	
A1	0	0.10	0.25	
A2	2.59	2.69	2.79	
b	0.77	-	0.90	
С	0.34	-	0.47	
c1	1.22	-	1.32	
е	1.70 BSC			
D	10.06	10.16	10.26	
E	9.05	9.15	9.25	
В	1.17	1.27	1.40	
V	6.86	-	7.50	
Х	7.50	-	8.30	
L	14.70	15.10	15.50	
L1		2.00 REF		
L2	2.00	2.30	2.60	
θ	0°	-	8°	

NOTES:

Body dimensions do not include mode flash or protrusion.
This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-89-3	7″	13.2	4.85	4.45	1.85	4.0	8.0	2.0	12.0	Q3
SOT-223-3	13″	12.4	6.55	7.25	1.90	4.0	8.0	2.0	12.0	Q3
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1
TO-263-5B	13″	24.4	10.80	16.30	5.11	4.0	16.0	2.0	24.0	

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	
13″	386	280	370	5	DD0002