SGM2045 300mA, Low V_{IN}, Ultra-Low Noise and High PSRR Linear Regulator

GENERAL DESCRIPTION

The SGM2045 is an ultra-low noise, low V_{IN} , high PSRR, high accuracy and low dropout voltage linear regulator. It is capable of supplying 300mA output current with typical dropout voltage of only 80mV. The operating input voltage range is from 1.1V to 5.5V and output voltage range is from 0.6V to 4.2V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SGM2045 has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

The SGM2045 is suitable for application which needs low noise and fast transient response power supply, such as power supply of camera module in smart phone, etc.

The SGM2045 is available in Green XTDFN-1×1-4L and WLCSP-0.64×0.64-4B-A packages. It operates over an operating temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C.

APPLICATIONS

Portable Electronic Devices Smoke Detectors IP Cameras Wireless LAN Devices Battery-Powered Equipment Smartphones and Tablets Digital Cameras and Audio Devices

FEATURES

- Operating Input Voltage Range: 1.1V to 5.5V
- Fixed Output Voltage Option: 0.6V to 4.2V
- Ultra-Low Noise: 9.5µV_{RMS} (TYP)
- Ultra-Low Quiescent Current: 15µA (TYP)
- Standby Current: 0.03µA (TYP)
- High PSRR: 92dB (TYP) at 1kHz
- Low Dropout Voltage:
- 100mV (TYP) at 300mA when V_{OUT} = 1.8V (XTDFN-1×1-4L)
- 80mV (TYP) at 300mA when V_{OUT} = 1.8V (WLCSP-0.64×0.64-4B-A)
- Output Short-Circuit Protection
- Thermal Shutdown Protection
- Fast Load Transient Response
- Stable with 1µF Small Case Size Ceramic Capacitors
- -40°C to +125°C Operating Temperature Range
- Available in Green XTDFN-1×1-4L and WLCSP-0.64×0.64-4B-A Packages

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

300mA, Low V_{IN} , Ultra-Low Noise and High PSRR Linear Regulator

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2045-0.60	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-0.60XXDH4G/TR	08	Tape and Reel, 10000
SGM2045-0.75	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-0.75XXDH4G/TR	09	Tape and Reel, 10000
SGM2045-0.80	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-0.80XXDH4G/TR	10	Tape and Reel, 10000
SGM2045-0.85	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-0.85XXDH4G/TR	11	Tape and Reel, 10000
SGM2045-1.00	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.00XXDH4G/TR	12	Tape and Reel, 10000
SGM2045-1.05	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.05XXDH4G/TR	13	Tape and Reel, 10000
SGM2045-1.10	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.10XXDH4G/TR	15	Tape and Reel, 10000
SGM2045-1.20	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.20XXDH4G/TR	16	Tape and Reel, 10000
SGM2045-1.50	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.50XXDH4G/TR	MC	Tape and Reel, 10000
SGM2045-1.80	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-1.80XXDH4G/TR	17	Tape and Reel, 10000
SGM2045-2.50	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-2.50XXDH4G/TR	18	Tape and Reel, 10000
SGM2045-2.80	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-2.80XXDH4G/TR	19	Tape and Reel, 10000
SGM2045-3.00	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-3.00XXDH4G/TR	20	Tape and Reel, 10000
SGM2045-3.30	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-3.30XXDH4G/TR	21	Tape and Reel, 10000
SGM2045-4.20	XTDFN-1×1-4L	-40°C to +125°C	SGM2045-4.20XXDH4G/TR	22	Tape and Reel, 10000
SGM2045-0.60	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-0.60XG/TR	J1	Tape and Reel, 5000
SGM2045-0.80	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-0.80XG/TR	J2	Tape and Reel, 5000
SGM2045-0.85	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-0.85XG/TR	J4	Tape and Reel, 5000
SGM2045-1.00	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.00XG/TR	J5	Tape and Reel, 5000
SGM2045-1.05	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.05XG/TR	2045-1.05XG/TR JA	
SGM2045-1.10	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.10XG/TR	JD	Tape and Reel, 5000
SGM2045-1.20	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.20XG/TR	K9	Tape and Reel, 5000
SGM2045-1.75	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.75XG/TR	1P	Tape and Reel, 5000
SGM2045-1.80	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.80XG/TR	KA	Tape and Reel, 5000
SGM2045-1.825	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-1.825XG/TR	4N	Tape and Reel, 5000
SGM2045-2.50	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-2.50XG/TR	KB	Tape and Reel, 5000
SGM2045-2.80	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-2.80XG/TR	KD	Tape and Reel, 5000
SGM2045-3.00	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-3.00XG/TR	KF	Tape and Reel, 5000
SGM2045-3.30	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-3.30XG/TR	L2	Tape and Reel, 5000
SGM2045-4.20	WLCSP-0.64×0.64-4B-A	-40°C to +125°C	SGM2045-4.20XG/TR	L4	Tape and Reel, 5000

MARKING INFORMATION

<u>YY</u>

— Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

IN to GND	3V to (V _{IN} + 0.3V)
Package Thermal Resistance	
XTDFN-1×1-4L, θ _{JA}	242°C/W
XTDFN-1×1-4L, θ _{JB}	107°C/W
XTDFN-1×1-4L, θ_{JC}	238°C/W
WLCSP-0.64×0.64-4Β-Α, θ _{JA}	285°C/W
WLCSP-0.64×0.64-4Β-Α, θ _{JB}	50°C/W
WLCSP-0.64×0.64-4Β-Α, θ _{JC}	116°C/W
Junction Temperature	
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
НВМ	8000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	1.1V to 5.5V
Enable Input Voltage Range	0V to 5.5V
Input Effective Capacitance, CIN	0.1µF (MIN)
Output Effective Capacitance, COUT	0.5µF to 200µF
Operating Junction Temperature Range	40°C to +125°C

300mA, Low V_{IN}, Ultra-Low Noise and High PSRR Linear Regulator

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

(TOP VIEW) 1 2 A (IN) (OUT) B (EN) (GND)

WLCSP-0.64×0.64-4B-A

PIN DESCRIPTION

PIN			FUNCTION				
XTDFN-1×1-4L	WLCSP- 0.64×0.64-4B-A	NAME	FUNCTION				
1	A2	OUT	Regulated Output Voltage Pin. It is recommended to use an output capacitor with effective capacitance in the range of 0.5μ F to 200μ F. The capacitor should be located very close to this pin.				
2	B2	GND	Ground.				
3	B1	EN	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator. The EN pin has an internal 0.03µA pull-down current source which ensures that the device is turned off when the EN pin is floated. This pin must be connected to IN pin if enable functionality is not used.				
4	A1	IN	Input Voltage Supply Pin. It is recommended to use a $1\mu F$ or larger ceramic capacitor from IN pin to ground.				
Exposed Pad			Exposed Pad. Exposed pad is internally connected to GND. Connect it to a large ground plane to maximize thermal performance.				

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = (V_{OUT(NOM)} + 0.3V)$ or 1.1V (whichever is greater), $V_{EN} = V_{IN}$, $C_{IN} = C_{OUT} = 1\mu$ F, $T_J = -40^{\circ}$ C to +125°C, typical values are at $T_J = +25^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIC	NS	MIN	TYP	MAX	UNITS	
		I _{OUT} = 60mA				5.5	- V	
		I _{OUT} = 100mA				5.5		
Input Voltage Range	V _{IN}	I _{OUT} = 200mA				5.5		
		I _{OUT} = 300mA		1.4		5.5		
	.,	$V_{IN} = (V_{OUT(NOM)} + 0.3V)$ to 5.5V,	_{OUT} = 0.1mA, T _J = +25°C	-1		1	~ ~ ~	
Output Voltage Accuracy	V _{OUT}	$V_{IN} = (V_{OUT(NOM)} + 0.3V)$ to 5.5V,	out = 0.1mA to 300mA	-2.5		2.5	%	
Line Regulation	ΔV_{LNR}	$V_{IN} = (V_{OUT(NOM)} + 0.3V)$ to 5.5V, $I_{OUT} = 0.1mA$			0.05	2.5	mV	
Load Regulation	$\Delta V_{LDR}/V_{OUT}$	I _{OUT} = 0.1mA to 300mA			0.4	10	mV/V	
		$V_{OUT} = 90\% \times V_{OUT(NOM)},$	$T_J = -20^{\circ}C$ to $+125^{\circ}C$	300	600			
Output Current Limit	I _{LIMIT}	$V_{IN} = (V_{OUT(NOM)} + 0.3V) \text{ or } 1.4V$	T _J = -40°C to +125°C	260	600		mA	
Short-Circuit Current	I _{SHORT}	V _{OUT} = 0V			380		mA	
Quiescent Current	Ι _Q	I _{OUT} = 0mA			15	40	μA	
		I _{OUT} = 60mA	$1.05V \le V_{OUT(NOM)} < 1.2V$		65	110		
			$1.05V \le V_{OUT(NOM)} \le 1.2V$		100	160	1	
	V _{DROP}	I _{OUT} = 100mA	$1.2V \le V_{OUT(NOM)} \le 1.5V$		65	110	1	
			$1.05V \le V_{OUT(NOM)} < 1.2V$		185	260	1	
		I _{OUT} = 200mA	$1.2V \le V_{OUT(NOM)} \le 1.5V$		125	210	- mV -	
2 (1)		I _{OUT} = 300mA	$1.05V \le V_{OUT(NOM)} \le 1.2V$		260	360		
Dropout Voltage ⁽¹⁾			$1.2V \le V_{OUT(NOM)} < 1.5V$		185	300		
			$1.5V \le V_{OUT(NOM)} < 1.8V$		125	220		
		I _{OUT} = 300mA, XTDFN-1×1-4L	$1.8V \le V_{OUT(NOM)} \le 2.8V$		100	190		
			$2.8V \le V_{OUT(NOM)} \le 4.2V$		70	150		
		I _{OUT} = 300mA,	$1.8V \le V_{OUT(NOM)} \le 2.8V$		80	130		
		WLCSP-0.64×0.64-4B-A	$2.8V \le V_{OUT(NOM)} \le 4.2V$		50	120	1	
	VIH		•	0.7				
EN Input Threshold	VIL	V _{IN} = 1.1V to 5.5V				0.3	V	
EN Pull-Down Current	I _{EN}	V _{EN} = V _{IN} = 5.5V			0.03	1	μA	
Shutdown Current	I _{SHDN}	V _{EN} = 0V, V _{IN} = 5.5V			0.03	2	μA	
Turn-On Time	t _{on}	From EN rising from 0V to VIN to 9	90% × V _{OUT(NOM)} , no load		100	240	μs	
			f = 100Hz		90			
		I _{OUT} = 20mA,	f = 1kHz		92		1	
Power Supply Rejection Ratio	PSRR	$V_{IN} = V_{OUT(NOM)} + 1V$	f = 10kHz		80		dB	
			f = 100kHz		55		1	
Output Voltage Noise	en	f = 10Hz to 100kHz, I _{OUT} = 20mA			9.5		μV _{RMS}	
Output Discharge Resistance	R _{DIS}	V _{EN} = 0V, V _{OUT} = 0.2V, V _{IN} = 3.3V	/		60		Ω	
Thermal Shutdown Temperature	T _{SHDN}				160		°C	
Thermal Shutdown Hysteresis	ΔT_{SHDN}				20		°C	

NOTE:

1. Dropout voltage is characterized when V_{OUT} falls 50mV below $V_{\text{OUT(NOM)}}$

300mA, Low V_{IN}, Ultra-Low Noise and High PSRR Linear Regulator

TYPICAL PERFORMANCE CHARACTERISTICS

SGM2045

300mA, Low V_{IN}, Ultra-Low Noise and High PSRR Linear Regulator

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

Figure 2. Block Diagram

APPLICATION INFORMATION

The SGM2045 is a low input voltage, ultra-low noise and low dropout LDO and provides 300mA output current. These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply. The high performance also makes the SGM2045 useful in a variety of applications. The SGM2045 provides the protection function for output overload, output short -circuit condition and overheating.

The SGM2045 provides an EN pin as an external chip enable control to enable/disable the device. When the regulator is in shutdown state, the shutdown current consumes as low as $0.03\mu A$ (TYP).

Input Capacitor Selection (C_{IN})

The input decoupling capacitor is necessary to be connected as close as possible to the IN pin for ensuring the device stability. 0.1μ F or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output decoupling capacitor should be located as close as possible to the OUT pin. 1µF or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2045 can remain stable is 0.5µF. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Larger capacitance and lower ESR C_{OUT} will help improve the load transient response and increase the high frequency PSRR.

Enable Control

The SGM2045 uses the EN pin to enable/disable its device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 0.3V, the device is in shutdown state, there is no current flowing from IN to OUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through a 60Ω (TYP) resistor.

When the EN pin voltage is higher than 0.7V, the device is in active state, the input voltage is regulated to the output voltage and the automatic discharge transistor is turned off.

The EN pin is pulled down by internal 0.03μ A (TYP) current source when the EN pin is floated. This current source will ensure the SGM2045 in shutdown state and reduce the power dissipation in system.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 600mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 380mA (TYP).

Thermal Shutdown

The SGM2045 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2045 will be in shutdown state and it will remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2045. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much that raise the operation junction temperature exceeds +160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2045 must not exceed +125°C.

The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be approximated using the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$
(3)

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction -to-ambient thermal resistance.

APPLICATION INFORMATION (continued)

Negatively Biased Output

When the output is negative voltage, the chip may not start up due to parasitic effects. Ensure that the output is greater than -0.3V under all conditions. If excessive negatively biased output is expected in the application, a Schottky diode can be added between the OUT pin and GND pin.

Reverse Current

The pass transistor has an inherent body diode which will be forward biased in the case when $V_{OUT} > (V_{IN} + 0.3V)$. If extended reverse voltage operation is anticipated, external limiting might be appropriate.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DECEMBER 2021 – REV.A.1 to REV.A.2	Page			
Updated Electrical Characteristics section				
pdated Typical Performance Characteristics section				
OCTOBER 2021 – REV.A to REV.A.1	Page			
Updated Electrical Characteristics section	5			
Changes from Original (SEPTEMBER 2021) to REV.A	Page			
Changed from product preview to production data	All			

PACKAGE OUTLINE DIMENSIONS

XTDFN-1×1-4L

BOTTOM VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	МАХ				
A	0.340	0.370	0.400				
A1	0.000	0.020	0.050				
A2		0.100 REF					
b	0.170	-	0.300				
D	0.950	0.950 1.000					
E	0.950	1.000	1.050				
D1	0.430	0.480	0.530				
E1	0.430	0.430 0.480					
L	0.200	0.200 0.250					
L1	0.200	-	0.370				
е	0.650 BSC						
k	0.150	-	-				
eee	-	0.050	-				

NOTE: This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

WLCSP-0.64×0.64-4B-A

SIDE VIEW

BOTTOM VIEW

Symbol	Dimensions In Millimeters						
	MIN	MOD	MAX				
A	0.262	0.290	0.318				
A1	0.050	0.060	0.070				
D	0.620	0.645	0.670				
E	0.620	0.645	0.670				
d	0.190	0.200	0.210				
е	0.350 BSC						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
XTDFN-1×1-4L	7"	9.5	1.16	1.16	0.50	4.0	2.0	2.0	8.0	Q1
WLCSP-0.64×0.64-4B-A	7″	9.5	0.74	0.74	0.37	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002