GENERAL DESCRIPTION

The SGM8212-1/2 are low noise operational amplifiers which can operate from $\pm 1.35V$ to $\pm 18V$ dual power supplies or from 2.7V to 36V single supply. These devices are available in micro-packages and offer low offset and wide bandwidth with low quiescent current. The single and dual versions all have identical specifications for maximum design flexibility.

The SGM8212-1/2 can operate with full rail-to-rail input 100mV beyond the rail, but with reduced performance within 2V of the top rail.

The single SGM8212-1 is available in Green SOT-553-5, SOT-23-5 and SOIC-8 packages. The dual SGM8212-2 is available in Green SOIC-8 and TDFN- $3\times3-8L$ packages. The SGM8212-1/2 are specified over the extended -40°C to +125°C temperature range.

FEATURES

- Support Single or Dual Power Supplies: 2.7V to 36V or ±1.35V to ±18V
- Low Noise: 15nV/√Hz at 1kHz
- Input Offset Voltage: 1.8mV (MAX)
- Rail-to-Rail Input and Output
- Gain-Bandwidth Product: 2.5MHz
- Unity-Gain Stable
- Phase Margin: 60° for G = 1 and C_L = 10pF
- Low Quiescent Current: 475µA/Amplifier
- High CMRR: 98dB (TYP)
- Low Input Bias Current: 5pA (TYP)
- -40°C to +125°C Operating Temperature Range
- Small Packaging: SGM8212-1 Available in Green SOT-553-5, SOT-23-5 and SOIC-8 Packages SGM8212-2 Available in Green SOIC-8 and TDFN-3×3-8L Packages

APPLICATIONS

Tracking Amplifiers in Power Modules Merchant Power Supplies Transducer Amplifiers Bridge Amplifiers Temperature Measurements Strain Gauge Amplifiers Precision Integrators Battery-Powered Instruments Test Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOT-553-5	-40°C to +125°C	SGM8212-1XKB5G/TR	MFX	Tape and Reel, 4000
SGM8212-1	SOT-23-5	-40°C to +125°C	SGM8212-1XN5G/TR	R12XX	Tape and Reel, 3000
	SOIC-8		SGM8212-1XS8G/TR	SGM 82121XS8 XXXXX	Tape and Reel, 4000
SGM8212-2	SOIC-8	-40°C to +125°C	SGM8212-2XS8G/TR	SGM 82122XS8 XXXXX	Tape and Reel, 4000
3GIVIOZ 12-2	TDFN-3×3-8L	-40°C to +125°C	SGM8212-2XTDB8G/TR	SGM 82122DB XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: X = Date Code. XX = Date Code. XXXXX = Date Code, Trace Code and Vendor Code. SOT-553-5 SOT-23-5

YY	X	
		— Date Cod
		Sorial Nu

Date Code - Quarter Serial Number

SOIC-8/TDFN-3×3-8L

X	χ)	(X	Х	
Τ			L	Vendor
				Trace C

——— Trace Code ——— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Code

Supply Voltage, +V _S to -V _S 40V	
Input/Output Voltage Range (-V _S) - 0.3V to (+V _S) + 0.3V	
Junction Temperature+150°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature (Soldering, 10s)+260°C	
ESD Susceptibility	
HBM (SGM8212-1)2500V	
HBM (SGM8212-2)4000V	
CDM	

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

NOTE: For the TDFN-3×3-8L package, connect the exposed pad to -V_S or leave it unconnected.

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}C$, $V_S = \pm 1.35V$ to $\pm 18V$, $R_L = 10k\Omega$ connected to 0V, Full = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics							
	N	N = 0V	+25°C		0.4	1.8	
Input Offset Voltage	Vos	V _{CM} = UV	Full	+25°C 0.4 1.8 Full 1.1 2 Full 1.1 2 +25°C ±5 ±12 +25°C ±5 ±12 +25°C ±5 ±12 Full 0.4 1.1 +25°C ±5 ±12 Full 0.4 1.2 Full 0.4 1.2 Full 0.1 1.2 +25°C 63 80 1.4 Full 60 1.4 1.4 +25°C 63 80 1.4 Full 60 1.4 1.4 +25°C 78 94 1.4 Full 75 1.4 1.4 +25°C 100 115 1.4 Full 97 1.4 1.4 +25°C 103 130 1.4 Full 100 1.5 1.4 Full 120 1.4 1.4 <	2	mV	
Input Offset Voltage Drift	$\Delta V_{OS} / \Delta T$		Full		1.1		µV/⁰C
Input Bias Current	Ι _Β	V _{CM} = 0V	+25°C		±5	±120	pА
Input Offset Current	l _{os}	V _{CM} = 0V	+25°C		±5	±120	pА
Maximum Differential Input Voltage	IV _{ID} I		Full			Vs	V
Maximum Input Difference Bias Current		$(1 - \pm 10)/(1 - \pm 10$	+25°C		2	3	
Maximum input Diference bias Current	II _{ID} I	$V_{\rm S} = \pm 10V, V_{\rm ID} = \pm 10V$	Full			4	μA
Input Common Mode Voltage Range	V _{CM}		Full	(-V _S) - 0.1		(+V _s)+0.1	V
		$V_{\rm S} = \pm 2V$,	+25°C	63	80		
	CMRR	$(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) + 0.1V$	Full	60			dB
Common Mode Rejection Ratio		V _S = ±2V, (-V _S) - 0.1V < V _{CM} < (+V _S) - 2V	+25°C	78	94		
			Full	75			
		V _s = ±18V,	+25°C	83	98		
		$(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) + 0.1V$	Full	80			
		V _s = ±18V,	+25°C	100	115		
		$(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) - 2V$	Full	97		80 94 94 98 115 130 140 110	
		$V_{\rm S} = \pm 2V$,	+25°C	103	130		dB
	•	$(-V_{\rm S})$ + 0.35V < $V_{\rm OUT}$ < $(+V_{\rm S})$ - 0.35V	Full	100			
Open-Loop Voltage Gain	A _{OL}	$V_{\rm S} = \pm 18 V_{\rm s}$	+25°C	123	140		
		$(-V_{\rm S})$ + 0.35V < $V_{\rm OUT}$ < $(+V_{\rm S})$ - 0.35V	Full	120			
Output Characteristics		•	•				
			+25°C		110	150	
Output Voltage Swing from Rail	V _{OUT}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	240	mV			
Output Short-Circuit Current	I _{SC}	V _S = ±18V	+25°C	±16	±30		mA
Power Supply		•	•				
Operating Voltage Range	Vs		Full	2.7		36	V
Quioscont Current/Amplifier		- 04	+25°C		475	600	
Quiescent Current/Amplifier	ΙQ	IOUT - UA	Full			680	μA
Power Supply Princip Potio	DCDD	1/1 = 4/1 to $36/1$	+25°C	103	120		d۵
Power Supply Rejection Ratio	PSRR	v _S - 4v to 30v	Full	100			dB

ELECTRICAL CHARACTERISTICS (continued)

(At $T_A = +25^{\circ}$ C, $V_S = \pm 1.35$ V to ± 18 V, $R_L = 10$ k Ω connected to 0V, Full = -40°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Dynamic Performance		•					
Gain-Bandwidth Product	GBP	C _L = 10pF	+25°C		2.5		MHz
Phase Margin	φο	C _L = 10pF	+25°C		60		0
Slew Rate	SR	$V_{\rm S}$ = ±2V to ±18V, G = +1	+25°C		1.5		V/µs
Settling Time to 0.1%	ts	V _S = ±18V, G = +1, 10V step	+25°C		15		μs
Overload Recovery Time	ORT	$V_{IN} \times G > V_S$	+25°C		2		μs
Total Harmonic Distortion + Noise	THD+N	$V_{S} = 36V, V_{OUT} = 3V_{RMS}, f = 1kHz, G = +1$	+25°C		0.0002		%
Noise							
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		2.5		μV _{P-P}
Innut Valtara Naisa Danaitu		f = 100Hz	+25°C		25		
Input Voltage Noise Density	en	f = 1kHz	+25°C		15		nV/√Hz
Input Current Noise Density	i _n	f = 1kHz	+25°C		300		fA/√Hz

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = ±18V, R_L = 10k Ω , unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = \pm 18V$, $R_L = 10k\Omega$, unless otherwise noted.

180

150

120

90

60

30

0

Phase (degree)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}$ C, $V_S = \pm 18$ V, $R_L = 10$ k Ω , unless otherwise noted.

APPLICATION NOTES

Rail-to-Rail Input

The input common mode voltage range of the SGM8212-1/2 extends 100mV beyond the supply rails for the full supply voltage range of 2.7V to 36V. Diodes between the inputs and the supply rails keep the input voltage from exceeding the rails.

Figure 1. Equivalent Input Circuit

Input Protection

The SGM8212-1/2 family incorporates internal ESD protection circuits on all pins. For input and output pins, this protection primarily consists of current-steering diodes connected between the input and power supply pins. Therefore, as well as keeping the input voltage below the maximum rating, it is also important to limit the input current to less than 10mA. Figure 2 shows how a series input resistor can be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in noise-sensitive applications.

Figure 2. Input Current Protection

Rail-to-Rail Output

The minimum output voltage will be within millivolts of ground for single-supply operation where the load is referenced to ground (- V_s). With a 36V supply and the load tied to ground, the typical output swings from 0.11V to 35.89V.

Driving Capacitive Loads

The SGM8212-1/2 are unity-gain stable for capacitive load up to 300pF. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figure 3). Note that this alternative results in a loss of gain accuracy because R_{ISO} forms a voltage divider with the R_{LOAD} .

Figure 3. Using Isolation Resistor to Improve Stability when Driving Heavy Capacitive Load

Power Supply Bypassing and Layout

Power supply pins are actually inputs to the amplifiers. Care must be taken to provide the amplifiers with a clean, low noise DC voltage source.

Power supply bypassing is employed to provide a low impedance path to ground for noise and undesired signals at all frequencies. This cannot be achieved with a single capacitor type; but with a variety of capacitors in parallel, the bandwidth of power supply bypassing can be greatly extended. The bypass capacitors have two functions:

1. Provide a low impedance path for noise and undesired signals from the supply pins to ground.

2. Provide local stored charge for fast switching conditions and minimize the voltage drop at the supply pins during transients. This is typically achieved with large electrolytic capacitors.

APPLICATION NOTES (continued)

Good quality ceramic chip capacitors should be used and always kept as close as possible to the amplifier package. A parallel combination of a 0.1μ F ceramic and a 10μ F electrolytic covers a wide range of rejection for unwanted noise. The 10μ F capacitor is less critical for high frequency bypassing, and in most cases, one per supply line is sufficient. The values of capacitors are circuit-dependent and should be determined by the system's requirements.

Figure 4. Amplifier with Bypass Capacitors

Grounding

Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.

A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.

Input-to-Output Coupling

To minimize capacitive coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Difference Amplifier

The circuit shown in Figure 5 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

Figure 5. Difference Amplifier

High Input Impedance Difference Amplifier

The circuit in Figure 6 performs the same function as that in Figure 5 but with a high input impedance.

Figure 6. High Input Impedance Difference Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 7 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

Figure 7. Active Low-Pass Filter

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2020) to REV.A	Page
Changed from product preview to production data	All

SOT-553-5

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.525	0.600	0.021	0.024		
A1	0.000	0.050	0.000	0.002		
b	0.170	0.270	0.007	0.011		
С	0.090	0.160	0.004	0.006		
D	1.500	1.700	0.059	0.067		
E	1.100	1.300	0.043	0.051		
E1	1.500	1.700	0.059	0.067		
е	0.500) TYP	0.020	TYP		
e1	1.000 TYP		0.040	TYP		
L	0.100	0.300	0.004	0.012		
θ	7° F	REF	7° REF			

SOT-23-5

Symbol		nsions meters	Dimensions In Inches			
	MIN	MIN MAX		MAX		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
e	0.950	BSC	0.037 BSC			
e1	1.900 BSC		0.075	BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

SOIC-8

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
с	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
e	1.27 BSC		0.050	BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

TDFN-3×3-8L

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	B REF	0.008 REF			
D	2.900	3.100	0.114	0.122		
D1	2.200	2.400	0.087	0.094		
E	2.900	3.100	0.114	0.122		
E1	1.400	1.600	0.055	0.063		
k	0.200) MIN	0.008 MIN			
b	0.180	0.300	0.007	0.012		
е	0.650) TYP	0.026 TYP			
L	0.375	0.575	0.015	0.023		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-553-5	7″	9.5	1.78	1.78	0.69	4.0	4.0	2.0	8.0	Q3
SOT-23-5	7″	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-8L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18]_
13″	386	280	370	5	DD0002