## **GENERAL DESCRIPTION**

The SGM42633 is a bipolar stepper motor driver with dual, built-in H-bridges. It operates from a supply voltage range of 2.5V to 12V, and each H-bridge of the SGM42633 can deliver motor current up to 700mA RMS (or DC) continuously, at +25°C with a  $V_{CC}$  supply of 5V. The internal safety features include sinking and sourcing current limits implemented with external sensors.

Internal over-current and over-temperature circuits prevent the device from being in over-stress condition, while a fault output simplifies stalling sensing, which is a useful feature for most applications. A low power sleep mode is also provided.

The device is available in Green TQFN-3×3-16L and TSSOP-16 (Exposed Pad) packages.

## **APPLICATIONS**

Robotics Point-of-Sale Printers

Battery-Powered Toys Video Security Cameras Office Automation Machines

## TYPICAL APPLICATION

## FEATURES

- Wide Power Supply Voltage Range: 2.5V to 12V
- Dual H-Bridge Motor Driver
- Low Quiescent Current: 150µA (TYP)
- Sleep Mode Supply Current: 0.32µA (TYP)
- xINx (PWM) Interface
- Output Current Capability (at V<sub>cc</sub> = 5V, +25°C)
  - TSSOP Package:
    - 0.7A RMS, 1A Peak per H-Bridge
    - 1.4A RMS in Parallel Mode
  - TQFN Package:
    0.6A RMS, 1A Peak per H-Bridge
    1.2A RMS in Parallel Mode
- UVLO for VCC Voltage
- Over-Current Protection (OCP)
- Thermal Shutdown (TSD)
- Fault Indication Pin (nFAULT)
- Available in Green TSSOP-16 (Exposed Pad) and TQFN-3×3-16L Packages



## **PACKAGE/ORDERING INFORMATION**

| MODEL      | PACKAGE<br>DESCRIPTION    | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING          | PACKING<br>OPTION   |
|------------|---------------------------|-----------------------------------|--------------------|-----------------------------|---------------------|
| SGM42633   | TSSOP-16<br>(Exposed Pad) | -40°C to +125°C                   | SGM42633XPTS16G/TR | SGM42633<br>XPTS16<br>XXXXX | Tape and Reel, 4000 |
| 3GIVI42033 | TQFN-3×3-16L              | -40°C to +125°C                   | SGM42633XTQ16G/TR  | 42633TQ<br>XXXXX            | Tape and Reel, 4000 |

### MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.



└── Vendor Code ──── Trace Code

- Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

| Power Supply Voltage Range, V <sub>CC</sub> 0.3V to 13.2V |
|-----------------------------------------------------------|
| Control Pins                                              |
| (AIN1, AIN2, BIN1, BIN2, nSLEEP, nFAULT) to GND           |
| -0.3V to 6V                                               |
| Package Thermal Resistance                                |
| TSSOP-16 (Exposed Pad), $\theta_{JA}$                     |
| TQFN-3×3-16L, θ <sub>JA</sub>                             |
| Operating Junction Temperature+150°C                      |
| Storage Temperature Range65°C to +150°C                   |
| Lead Temperature (Soldering, 10s)+260°C                   |
| ESD Susceptibility                                        |
| HBM6000V                                                  |
| CDM                                                       |

### **RECOMMENDED OPERATING CONDITIONS**

| Power Supply Voltage Range, V <sub>CC</sub> 2.5    | V to 12V  |
|----------------------------------------------------|-----------|
| Motor RMS Current, I <sub>RMS</sub>                |           |
| TSSOP-16 (Exposed Pad) Package0A                   | A to 0.7A |
| TQFN-3×3-16L Package0A                             | ∖ to 0.6A |
| Applied PWM Signal to AIN1, AIN2, BIN1, or BIN2, f | PWM       |
| 0 to                                               | 200kHz    |
| Operating Ambient Temperature Range40°C to         | › +125℃   |
| Operating Junction Temperature Range40°C to        | › +125℃   |

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

### **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

TQFN-3×3-16L

## **PIN CONFIGURATIONS**



**TSSOP-16 (Exposed Pad)** 

## 

| PIN DESCI                 | RIPTION        |               |      |                                                                                                                                                                                          |
|---------------------------|----------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PI                        | N              |               |      |                                                                                                                                                                                          |
| TSSOP-16<br>(Exposed Pad) | TQFN-3×3-16L   | NAME          | TYPE | FUNCTION                                                                                                                                                                                 |
| 2                         | 16             | AOUT1         | 0    | Bridge A Nodes.                                                                                                                                                                          |
| 4                         | 2              | AOUT2         | 0    | Bridge A Nodes.                                                                                                                                                                          |
| 7                         | 5              | BOUT1         | 0    | Pridge P Nodes                                                                                                                                                                           |
| 5                         | 3              | BOUT2         | 0    | Bridge B Nodes.                                                                                                                                                                          |
| 16                        | 14             | AIN1          | 1    | H-Bridge A PWM Inputs. Control the state of AOUT1 and AOUT2.                                                                                                                             |
| 15                        | 13             | AIN2          | I    | Internal pull-down.                                                                                                                                                                      |
| 9                         | 7              | BIN1          | 1    | H-Bridge B PWM Inputs. Control the state of BOUT1 and BOUT2.                                                                                                                             |
| 10                        | 8              | BIN2          | I    | Internal pull-down.                                                                                                                                                                      |
| 1                         | 15             | nSLEEP        | I    | Sleep Mode Input. Apply logic high to enable device, and apply logic low to enter in the low power sleep mode. Internal pull-down.                                                       |
| 8                         | 6              | nFAULT        | OD   | Fault Indication Pin. The logic is pulled low with a fault condition.<br>Open-drain output requires an external pull-up.                                                                 |
| 3                         | 1              | AISEN         | I/O  | Bridge A Ground or I <sub>CHOP</sub> .                                                                                                                                                   |
| 6                         | 4              | BISEN         | I/O  | Bridge B Ground or I <sub>CHOP</sub> .                                                                                                                                                   |
| 12                        | 10             | VCC           | Р    | Device Power Supply. Connect to motor supply. A 10µF (MIN) ceramic bypass capacitor to GND is recommended.                                                                               |
| 13                        | 11             | GND           | G    | Ground.                                                                                                                                                                                  |
| 11, 14                    | 9, 12          | NC            | -    | No Connection.                                                                                                                                                                           |
| Exposed<br>Pad            | Exposed<br>Pad | GND<br>(PPAD) | G    | Exposed Pad. Exposed pad is internally connected to GND.<br>Connect it to a large ground plane to maximize thermal<br>performance. It is not intended as an electrical connection point. |

NOTE: I = input, O = output, I/O = input or output, OD = open-drain output, G = ground, P = power for the circuit.

## **ELECTRICAL CHARACTERISTICS**

(Vcc = 5V, Full = -40°C to +125°C. Typical values are at  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                             | SYMBOL             | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEMP  | MIN  | TYP  | MAX  | UNITS |
|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|-------|
| Power Supplies (VCC)                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | •    | •    | •     |
| Power Supply Voltage                  | V <sub>CC</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Full  | 2.5  |      | 12   | V     |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |      | 150  | 220  |       |
| Power Supply Current                  | Ivcc               | xINx low, nSLEEP high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Full  |      |      | 230  | μA    |
| Ole on Marila Ormalia Ormani          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |      | 0.32 | 0.6  | μA    |
| Sleep Mode Supply Current             | I <sub>VCCQ</sub>  | nSLEEP low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Full  |      |      | 5    |       |
| Time to Enter Sleep Mode              | t <sub>SLEEP</sub> | nSLEEP low to sleep mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +25°C |      | 10   |      | μs    |
| Wake-Up Time                          | t <sub>WAKE</sub>  | nSLEEP high to output transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +25°C |      | 100  |      | μs    |
| Turn-On Time                          | t <sub>on</sub>    | $V_{CC} > V_{UVLO}$ to output transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +25°C |      | 30   |      | μs    |
| Control Inputs (AIN1, AIN2, BIN1, BIN | 2 and nSLEEF       | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |      |      |       |
|                                       |                    | xINx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Full  | 0    |      | 0.5  |       |
| Input Logic Low Voltage               | V <sub>IL</sub>    | nSLEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Full  | 0    |      | 0.5  | V     |
| Input Logic Lligh Voltage             | V                  | xINx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Full  | 1.5  |      | 5.5  | v     |
| Input Logic High Voltage              | V <sub>IH</sub>    | nSLEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Full  | 1.5  |      | 5.5  | v     |
| Input Logic Hysteresis                | V <sub>HYS</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |      | 200  |      | mV    |
|                                       | 1                  | V <sub>IN</sub> = 0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +25°C | -0.5 | 0.01 | 0.5  | μA    |
| Input Logic Low Current               | Ι <sub>IL</sub>    | V <sub>IN</sub> – UV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Full  | -1   |      | 1    |       |
|                                       |                    | xINx, V <sub>IN</sub> = 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +25°C |      | 33   | 45   | μA    |
| Input Logic High Current              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Full  |      |      | 52   |       |
|                                       | I <sub>IH</sub>    | nSLEEP, V <sub>IN</sub> = 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +25°C |      | 10   | 14   |       |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Full  |      |      | 17   |       |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C | 110  | 150  | 190  |       |
| Pull-Down Resistance                  | D                  | xINx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Full  | 80   |      | 220  | k0    |
| Full-Down Resistance                  | R <sub>PD</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C | 380  | 500  | 620  | kΩ    |
|                                       |                    | nSLEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Full  | 280  |      | 730  |       |
| Input Deglitch Time                   | t <sub>DEG</sub>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |      | 610  |      | ns    |
| Propagation Delay INx to OUTx         | t <sub>PROP</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |      | 800  |      | ns    |
| Control Output (nFAULT)               | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |      |      |       |
| Output Logia Low Valtage              | N/                 | L = 5mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +25°C |      | 0.22 | 0.3  | V     |
| Output Logic Low Voltage              | V <sub>OL</sub>    | $I_0 = 5mA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Full  |      |      | 0.35 | V     |
| Output Logia High Lookaga Current     |                    | $P = \frac{1}{100} $ | +25°C | -1   | 0.01 | 1    |       |
| Output Logic High Leakage Current     | I <sub>он</sub>    | $R_{PULLUP} = 1k\Omega$ to 5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Full  | -2   |      | 2    | μA    |

## **ELECTRICAL CHARACTERISTICS (continued)**

(Vcc = 5V, Full = -40°C to +125°C. Typical values are at  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                          | SYMBOL                | CONDITIONS                            | TEMP  | MIN  | ТҮР  | MAX  | UNITS     |  |
|------------------------------------|-----------------------|---------------------------------------|-------|------|------|------|-----------|--|
| Motor Driver Outputs (AOUT1, AOUT  | 2, BOUT1 and          | BOUT2)                                | •     |      | •    | •    |           |  |
|                                    |                       |                                       | +25°C |      | 1120 | 1380 |           |  |
|                                    |                       | V <sub>CC</sub> = 5V, I = 0.2A        | Full  |      |      | 2000 | mΩ        |  |
| ligh-side FET On-Resistance        | R <sub>DSON_H</sub>   | $V_{\rm CC} = 2.5V, I = 0.2A$         | +25°C |      | 1480 | 1750 |           |  |
|                                    |                       |                                       | Full  |      |      | 2400 |           |  |
|                                    |                       | Vcc = 5V. I = -0.2A                   | +25°C |      | 490  | 560  |           |  |
| Low side FFT On Desistance         | P                     | $V_{CC} = 5V, I = -0.2A$              | Full  |      |      | 800  |           |  |
| Low-side FET On-Resistance         | R <sub>DSON_L</sub>   |                                       | +25°C |      | 655  | 900  | mΩ        |  |
|                                    |                       | V <sub>CC</sub> = 2.5V, I = -0.2A     | Full  |      |      | 1150 | 1         |  |
| Off State Laskana Cumant           |                       |                                       | +25°C | -0.5 | 0.01 | 0.5  |           |  |
| Off-State Leakage Current          | I <sub>OFF</sub>      |                                       | Full  | -1.5 |      | 1.5  | μA<br>1.5 |  |
| Output Rise Time                   | t <sub>RISE</sub>     | $R_L = 16\Omega$ to GND               | +25°C |      | 70   |      | ns        |  |
| Output Fall Time                   | t <sub>FALL</sub>     | $R_L$ = 16 $\Omega$ to $V_{CC}$       | +25°C |      | 60   |      | ns        |  |
| Output Dead Time                   | t <sub>DEAD</sub>     | Internal dead time                    | +25°C |      | 90   |      | ns        |  |
| PWM Current Controls (AISEN and E  | BISEN)                |                                       |       |      |      |      |           |  |
| xISEN Trip Voltage                 | V <sub>TRIP</sub>     |                                       | +25°C | 185  | 202  | 219  | m)/       |  |
|                                    | V TRIP                |                                       | Full  | 180  |      | 224  | mV        |  |
| Current Control Constant Off-Time  | t <sub>OFF</sub>      | Internal PWM constant off-time        | +25°C |      | 25   |      | μs        |  |
| Protection Circuits                |                       |                                       |       |      |      |      |           |  |
|                                    |                       | )/fallin nLIV/LO nament               | +25°C | 2.02 | 2.1  |      | - v       |  |
| VCC Under Voltage Leekeut          | V                     | V <sub>cc</sub> falling, UVLO report  | Full  | 2    |      |      |           |  |
| VCC Under-Voltage Lockout          | V <sub>UVLO</sub>     |                                       | +25°C |      | 2.3  | 2.42 |           |  |
|                                    |                       | V <sub>CC</sub> rising, UVLO recovery | Full  |      |      | 2.45 |           |  |
| VCC Under-Voltage Hysteresis       | V <sub>UVLO_HYS</sub> | Rising to falling threshold           | +25°C |      | 200  |      | mV        |  |
| Over-Current Protection Trip Level | I <sub>OCP</sub>      |                                       | +25°C | 1.01 | 1.5  |      | А         |  |
| Over-Current Deglitch Time         | t <sub>DEG</sub>      |                                       | +25°C |      | 2.6  |      | μs        |  |
| Over-Current Protection Period     | t <sub>OCP</sub>      |                                       | +25°C |      | 2.3  |      | ms        |  |
| Thermal Shutdown Temperature       | T <sub>TSD</sub>      |                                       |       |      | 160  |      | °C        |  |
| Thermal Shutdown Hysteresis        | T <sub>HYS</sub>      |                                       |       |      | 20   |      | °C        |  |

## **TYPICAL PERFORMANCE CHARACTERISTICS**









Low-side FET On-Resistance vs. Power Supply Voltage



## FUNCTIONAL BLOCK DIAGRAM



Figure 1. SGM42633 Block Diagram

## **DETAILED DESCRIPTION**

The SGM42633 is a motor driver that integrates two PMOS and NMOS H-bridges and current regulation circuitry. Each of the internal H-bridges has 700mA output current capability over an input voltage range of 2.5V to 12V. It can drive a stepper motor or two DC motors. The motor output current can be either

controlled by an external pulse width modulation (PWM) signal or by internal PWM current controller.

The SGM42633 includes the following fault protections: under-voltage lockout, over-current protection, and over-temperature protection. A low power sleep mode is also provided.

## **DETAILED DESCRIPTION (continued)**

#### **PWM Motor Drivers**

Block diagram of the integrated motor driver including current control PWM H-bridges is shown in Figure 2.



Figure 2. H-Bridge and Current Chopping Circuitry

#### **Bridge Control and Decay Modes**

The AINx input pins control the state of the AOUTx outputs; similarly, the BINx input pins control the state of the BOUTx outputs. Table 1 shows the logic.

| xIN1 | xIN2 | xOUT1 | xOUT2 | Function         |
|------|------|-------|-------|------------------|
| 0    | 0    | Z     | Z     | Coast/Fast Decay |
| 0    | 1    | L     | Н     | Reverse          |
| 1    | 0    | Н     | L     | Forward          |
| 1    | 1    | L     | L     | Brake/Slow Decay |

The SGM42633 also supports PWM mode of input to control the motor speed. When controlling a winding with PWM and the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow (called recirculation current). To handle this recirculation current, the H-bridge can operate in two different states, fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes. In slow decay mode, the motor winding is shorted by enabling both low-side FETs.

When external PWM modulate signal is applied to one xIN pin while the other is held low, the bridge is in fast decay mode; when the other xIN pin is held high, the bridge is in slow decay mode (see Table 2).

| Table 2. F | PWM | Control | of | Motor | Speed |
|------------|-----|---------|----|-------|-------|
|------------|-----|---------|----|-------|-------|

| xIN1 | xIN2 | Function                |
|------|------|-------------------------|
| PWM  | 0    | Forward PWM, Fast Decay |
| 1    | PWM  | Forward PWM, Slow Decay |
| 0    | PWM  | Reverse PWM, Fast Decay |
| PWM  | 1    | Reverse PWM, Slow Decay |

The internal current control is still enabled when applying external PWM to xINx. To disable the current control when applying external PWM, the xISEN pins should be connected directly to ground. Figure 3 shows the current paths in different drive and decay modes.



Figure 3. Drive and Decay Modes

## **DETAILED DESCRIPTION (continued)**

#### **Current Control**

The current through the motor windings is regulated by a 25µs constant off-time PWM current regulation, or current chopping. For DC motor application, current control is used to limit the startup and stall current of the motor. For stepper motors, current control is often used at all times.

When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle. Note that immediately after the output is enabled, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at  $3.2\mu$ s.

The PWM chopping current is set by a comparator that compares the voltage across a current sense resistor connected to the xISEN pins with a reference voltage. The reference voltage ( $V_{TRIP}$ ), is fixed at 202mV nominally.

The chopping current is calculated in Equation 1.

$$I_{CHOP} = \frac{202mV}{R_{xISEN}}$$
(1)

Example: If a  $0.5\Omega$  sense resistor is used, the chopping current will be  $202mV/0.5\Omega = 404mA$ .

Note that if current control is not needed, the xISEN pins should be connected directly to ground.

#### **Decay Mode**

After any drive phase, when a motor winding current reaches the current chopping threshold ( $I_{CHOP}$ ), the SGM42633 will place the bridge in slow decay mode. In slow decay mode, the high-side MOSFETs are turned off and both of the low-side MOSFETs are turned on. The motor current decreases while flowing in the two low-side MOSFETs until reaching its fixed off-time (25µs). Then, the high-side MOSFETs are enabled to increase the winding current again.



Figure 4. Current Chopping Operation

#### **Sleep Mode**

To idle the device and put it in the low power sleep mode, the nSLEEP pin can be pulled low. In the sleep mode, all H-bridges are disabled. All inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode,  $t_{WAKE}$  needs to pass before the motor driver becomes fully operational.

## **DETAILED DESCRIPTION (continued)**

#### **Parallel Mode**

The SGM42633 can be parallel connected for doubling the current of a single H-bridge to drive a DC motor. The dead time of the SGM42633 prevents any risk of cross-conduction (shoot-through) between the two H-bridges. Figure 5 shows this configuration.



Figure 5. Parallel Mode Schematic

#### **Protection Circuits**

The SGM42633 is fully protected against over-current, over-temperature, and under-voltage events.

#### **Over-Current Protection (OCP)**

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If over-current persists for longer than the OCP deglitch time, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. The driver is re-enabled after the OCP retry period has passed.

Note that over-current protection does not use the current sense circuitry used for PWM current control, so it functions even without the presence of the xISEN resistors.

#### Thermal Shutdown (TSD)

The junction temperature of the IC is internally monitored. If the junction temperature exceeds the threshold value (typically  $160 \,^{\circ}$ C), all FETs in the H-bridge are disable (the fault pin goes low) and recover once the junction temperature drops to about  $140\,^{\circ}$ C ( $20\,^{\circ}$ C hysteresis).

#### Under-Voltage Lockout (UVLO)

If at any time the voltage on the VCC pin falls below the UVLO threshold voltage, all circuitry in the device is disabled, and all internal logic is reset. Operation resumes when  $V_{CC}$  rises above the UVLO threshold. The nFAULT pin is not driven low during an under-voltage condition.

#### Table 3. Device Protection

| Fault                                        | Condition              | Error Report | H-Bridge | Internal Circuits | Recovery                    |
|----------------------------------------------|------------------------|--------------|----------|-------------------|-----------------------------|
| V <sub>CC</sub> Under-Voltage Lockout (UVLO) | V <sub>CC</sub> < 2.1V | None         | Disabled | Disabled          | V <sub>CC</sub> > 2.3V      |
| Over-Current Protection (OCP)                | $I_{OUT} > I_{OCP}$    | nFAULT       | Disabled | Operating         | OCP                         |
| Thermal Shutdown (TSD)                       | $T_J > T_{TSD}$        | nFAULT       | Disabled | Operating         | $T_J < T_{TSD}$ - $T_{HYS}$ |

#### Table 4. Modes of Operation

| Fault             | Fault Condition         |           | Internal Circuits |
|-------------------|-------------------------|-----------|-------------------|
| Operating         | nSLEEP pin high         | Operating | Operating         |
| Sleep Mode        | nSLEEP pin low          | Disabled  | Disabled          |
| Fault Encountered | Any fault condition met | Disabled  | See Table 3       |

## **APPLICATION INFORMATION**

#### **Power Supply Recommendations**

The SGM42633 operates from a supply voltage range of 2.5V to 12V. A more than  $10\mu F$  ceramic capacitor rated for  $V_{CC}$  must be placed as close to the SGM42633 as possible.

#### **Bypass Capacitance for Motor Drive Systems**

Bypass capacitance sizing is an important factor in motor drive system design. It depends on a variety of factors, including:

- Maximum power supply voltage
- Parasitic inductance in the power supply wiring
- Type of motor (brushed DC, brushless DC, stepper)

- Motor speed
- Motor braking method

Motor datasheets generally specify the capacitance value, however, it is recommended to do a system level test to size the bypass capacitors properly.

#### **Layout Guidelines**

Use a low ESR ceramic bypass capacitor connected between VCC pin and GND pin. This capacitor should be placed as close to the VCC pin as possible with a thick trace or ground plane connection to the device GND pin and PPAD.



Figure 6. Setup of Motor Drive System with External Power Supply

## **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| JULY 2021 – REV.A to REV.A.1                    | Page     |
|-------------------------------------------------|----------|
| Updated Electrical Characteristics section      |          |
| Changes from Original (DECEMBER 2019) to REV.A  | Page     |
| Changed from product preview to production data | <u> </u> |

# PACKAGE OUTLINE DIMENSIONS

# TSSOP-16 (Exposed Pad)





RECOMMENDED LAND PATTERN (Unit: mm)





| Symbol | -       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|---------|------------------|-------------------------|-------|--|
|        | MIN MAX |                  | MIN                     | MAX   |  |
| A      |         | 1.100            |                         | 0.043 |  |
| A1     | 0.050   | 0.150            | 0.002                   | 0.006 |  |
| A2     | 0.800   | 1.000            | 0.031                   | 0.039 |  |
| b      | 0.190   | 0.300            | 0.007                   | 0.012 |  |
| С      | 0.090   | 0.200            | 0.004                   | 0.008 |  |
| D      | 4.900   | 5.100            | 0.193                   | 0.201 |  |
| D1     | 2.900   | 3.100            | 0.114                   | 0.122 |  |
| E      | 4.300   | 4.500            | 0.169                   | 0.177 |  |
| E1     | 6.250   | 6.550            | 0.246                   | 0.258 |  |
| E2     | 2.200   | 2.400            | 0.087                   | 0.094 |  |
| е      | 0.650   | ) BSC            | 0.026 BSC               |       |  |
| L      | 0.500   | 0.700            | 0.02                    | 0.028 |  |
| Н      | 0.25    | TYP              | 0.01 TYP                |       |  |
| θ      | 1°      | 7°               | 1°                      | 7°    |  |

#### NOTES:

1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

# PACKAGE OUTLINE DIMENSIONS

## TQFN-3×3-16L



#### RECOMMENDED LAND PATTERN (Unit: mm)

| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
|        | MIN   | MAX              | MIN                     | MAX   |  |
| A      | 0.700 | 0.800            | 0.028                   | 0.031 |  |
| A1     | 0.000 | 0.050            | 0.000                   | 0.002 |  |
| A2     | 0.203 | 3 REF            | 0.008 REF               |       |  |
| D      | 2.900 | 3.100            | 0.114                   | 0.122 |  |
| D1     | 1.600 | 1.800            | 0.063                   | 0.071 |  |
| E      | 2.900 | 3.100            | 0.114                   | 0.122 |  |
| E1     | 1.600 | 1.800            | 0.063                   | 0.071 |  |
| k      | 0.200 | ) MIN            | 0.008 MIN               |       |  |
| b      | 0.180 | 0.300            | 0.007                   | 0.012 |  |
| е      | 0.500 | ) TYP            | 0.020                   | ) TYP |  |
| L      | 0.300 | 0.500            | 0.012                   | 0.020 |  |

NOTE: This drawing is subject to change without notice.

## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type              | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| TSSOP-16<br>(Exposed Pad) | 13″              | 12.4                     | 6.90       | 5.60       | 1.20       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |
| TQFN-3×3-16L              | 13″              | 12.4                     | 3.35       | 3.35       | 1.13       | 4.0        | 8.0        | 2.0        | 12.0      | Q2               |

## CARTON BOX DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |