SGM803B/SGM809B/SGM810B Low Power Microprocessor Supervisory Circuit in 3-Pin SOT-23

GENERAL DESCRIPTION

The SGM803B/SGM809B/SGM810B supervisory circuits monitor the power supply voltage in microprocessor and digital systems. They provide a reset output during power-up, power-down and brownout conditions. On power-up, an internal timer holds reset asserted for 240ms. This holds the microprocessor in a reset state until conditions have stabilized. The nRESET output remains operational with V_{CC} as low as 1V. The SGM803B and SGM809B provide an active low reset signal (nRESET) while the SGM810B provides an active high signal (RESET) output. The SGM809B/SGM810B have push-pull outputs, whereas the SGM803B has an open-drain output, which requires an external pull-up resistor.

Five reset threshold voltage options are available, suitable for monitoring 3V, 3.3V and 5V supply voltages.

The reset comparator features built-in glitch immunity, making it immune to fast transients on V_{CC} .

The low supply current of typically 300nA makes the SGM803B/SGM809B/SGM810B ideal for use in portable, battery operated equipment. All are specified over the extended -40°C to +125°C temperature range.

FEATURES

- Precision Voltage Monitor: 3V, 3.3V and 5V Options
- Superior Upgrade for MAX803/MAX809/MAX810 and ADM803/ADM809/ADM810
- Fully Specified over Temperature
- VCC Transient Immunity
- Low Power Consumption: 300nA (TYP)
- Reset Assertion Down to 1V V_{cc}
- 150ms Power-On Reset (MIN)
 Open-Drain nRESET Output (SGM803B)
 Push-Pull nRESET Output (SGM809B)
 Push-Pull RESET Output (SGM810B)
- -40°C to +125°C Operating Temperature Range
- Small Packaging SGM803B Available in SOT-23-3 and SOT-23 SGM809B Available in SOT-23-3 and SOT-23 SGM810B Available in SOT-23-3 and SOT-23

APPLICATIONS

Microprocessor Systems Controllers Intelligent Instruments Automotive Systems Safety Systems Portable Instruments

TYPICAL APPLICATION

PACKAGE/ORDERING INFORMATION

MODEL	RESET THRESHOLD (V)	PACKAGE DESCRIPTION	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	4.38	SOT-23-3	SGM803B-MXN3G/TR	M18XX	Tape and Reel, 3000
	4.38	SOT-23	SGM803B-MXN3LG/TR	M19XX	Tape and Reel, 3000
	4.00	SOT-23-3	SGM803B-JXN3G/TR	M1AXX	Tape and Reel, 3000
	4.00	SOT-23	SGM803B-JXN3LG/TR	M1BXX	Tape and Reel, 3000
SGM803B	3.08	SOT-23-3	SGM803B-TXN3G/TR	M1CXX	Tape and Reel, 3000
SGIVIOUSD	3.08	SOT-23	SGM803B-TXN3LG/TR	M1DXX	Tape and Reel, 3000
	2.93	SOT-23-3	SGM803B-SXN3G/TR	M1EXX	Tape and Reel, 3000
	2.93	SOT-23	SGM803B-SXN3LG/TR	GZ5XX	Tape and Reel, 3000
	2.63	SOT-23-3	SGM803B-RXN3G/TR	M1FXX	Tape and Reel, 3000
	2.63	SOT-23	SGM803B-RXN3LG/TR	M20XX	Tape and Reel, 3000
	4.38	SOT-23-3	SGM809B-MXN3G/TR	M21XX	Tape and Reel, 3000
	4.38	SOT-23	SGM809B-MXN3LG/TR	M22XX	Tape and Reel, 3000
	4.00	SOT-23-3	SGM809B-JXN3G/TR	M23XX	Tape and Reel, 3000
	4.00	SOT-23	SGM809B-JXN3LG/TR	M24XX	Tape and Reel, 3000
SGM809B	3.08	SOT-23-3	SGM809B-TXN3G/TR	M25XX	Tape and Reel, 3000
SGINIOUAD	3.08	SOT-23	SGM809B-TXN3LG/TR	GZ4XX	Tape and Reel, 3000
	2.93	SOT-23-3	SGM809B-SXN3G/TR	GZ0XX	Tape and Reel, 3000
	2.93	SOT-23	SGM809B-SXN3LG/TR	GYEXX	Tape and Reel, 3000
	2.63	SOT-23-3	SGM809B-RXN3G/TR	GZ2XX	Tape and Reel, 3000
	2.63	SOT-23	SGM809B-RXN3LG/TR	GZ1XX	Tape and Reel, 3000
	4.38	SOT-23-3	SGM810B-MXN3G/TR	M26XX	Tape and Reel, 3000
	4.38	SOT-23	SGM810B-MXN3LG/TR	M27XX	Tape and Reel, 3000
	4.00	SOT-23-3	SGM810B-JXN3G/TR	M28XX	Tape and Reel, 3000
	4.00	SOT-23	SGM810B-JXN3LG/TR	M29XX	Tape and Reel, 3000
SC M040D	3.08	SOT-23-3	SGM810B-TXN3G/TR	M2AXX	Tape and Reel, 3000
SGM810B	3.08	SOT-23	SGM810B-TXN3LG/TR	M2BXX	Tape and Reel, 3000
	2.93	SOT-23-3	SGM810B-SXN3G/TR	M2CXX	Tape and Reel, 3000
	2.93	SOT-23	SGM810B-SXN3LG/TR	GYFXX	Tape and Reel, 3000
	2.63	SOT-23-3	SGM810B-RXN3G/TR	M2DXX	Tape and Reel, 3000
	2.63	SOT-23	SGM810B-RXN3LG/TR	GZ3XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code.

- Date Code - Year

- Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

SGM803B/SGM809B/SGM810B

ABSOLUTE MAXIMUM RATINGS

V _{cc}	0.3V to 6V
RESET, nRESET	0.3V to V _{CC} + 0.3V
Input Current, V _{CC}	20mA
Output Current, RESET, nRESET	20mA
Rate of Rise, V _{CC}	100V/µs
Power Dissipation, P _D @ T _A = +25°C	
SOT-23-3	0.4W
Package Thermal Resistance	
SOT-23-3, θ _{JA}	250°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°Cto +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature	Range	40°C	to +125°C
-----------------------	-------	------	-----------

Low Power Microprocessor Supervisory Circuit in 3-Pin SOT-23

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

NAME	PIN NUMBER			FUNCTION			
INAME	SGM803B SGM809		SGM810B	I GIVE HON			
GND	1	1	1	Ground.			
nRESET	2	2		Active Low Reset (SGM803B/SGM809B). nRESET remains low while V_{CC} is below the reset threshold, and remains low for 240ms (TYP) after V_{CC} rises above the reset threshold.			
RESET	_	_	2	Active High Reset (SGM810B). RESET remains high while V_{CC} is below the reset threshold, and remains high for 240ms (TYP) after V_{CC} rises above the reset threshold.			
V _{CC}	3	3	3	Power Supply. Power supply voltage that is monitored.			

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V for M/J Models, 3.3V for T/S Models, 3V for R Model, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
SUPPLY							
Voltage	T _A = +25°C	1		5.5	v		
Voltage	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	1.25	1.25 5.5		v		
	V _{CC} < 5.5V, SGM8_M/J, T _A = +25°C		420	560	nA		
Queent	V_{CC} < 5.5V, SGM8_M/J, T_A = -40°C to +125°C			730			
Current	V _{CC} < 3.6V, SGM8_R/S/T, T _A = +25°C		300	430	54		
	V_{CC} < 3.6V, SGM8_R/S/T, T _A = -40°C to +125°C			590	nA		
RESET VOLTAGE THRESHOLD				-	•		
	V_{CC} falling, T_A = +25°C	4.247	4.38	4.452	N		
SGM8_M	V_{CC} falling, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	4.217		4.482	- V		
0010	V_{CC} falling, $T_A = +25^{\circ}C$	3.883	4.00	4.072			
SGM8_J	V_{CC} falling, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	3.859		4.101	- V		
	V_{CC} falling, $T_A = +25^{\circ}C$	3.001	3.08	3.151	N		
SGM8_T	V_{CC} falling, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	2.966		3.181	V		
	V_{CC} falling, T_A = +25°C	2.860	2.93	2.998	- V		
SGM8_S	V_{CC} falling, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	2.841		3.018			
2010 5	V_{CC} falling, $T_A = +25^{\circ}C$	2.571	2.63	2.698	V		
SGM8_R	V_{CC} falling, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	2.525		2.745			
Hysteresis Voltage Ratio	V _{cc} rising		0.5%				
Reset Threshold Temperature Coefficient			35		ppm/°C		
V _{cc} to RESET/nRESET Delay	V_{CC} falling from (V _{TH} + V _{HYS}) × (1 + 5%) to V _{TH} × (1 - 5%) ⁽¹⁾		110		μs		
Reset Active Timeout Period	T _A = +25°C	150	240	370	ms		
	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	110		400	1113		
RESET/nRESET OUTPUT VOLTAGE					-		
Low (SGM803B-R/S/T) Low (SGM809B-R/S/T)	$V_{CC} = V_{TH(MIN)}$, I _{SINK} = 1.2mA			0.3	V		
Low (SGM803B-M/J) Low (SGM809B-M/J)	$V_{CC} = V_{TH(MIN)}, I_{SINK} = 3.2mA$			0.4	V		
Low (SGM803B-R/S/T/M/J) Low (SGM809B-R/S/T/M/J)	V_{CC} > 1V, I_{SINK} = 50 μ A			0.3	V		
High (SGM809B-R/S/T) $V_{CC} > V_{TH(MAX)}$, $I_{SOURCE} = 500 \mu A$		$0.8 \times V_{CC}$			V		
High (SGM809B-M/J)	$V_{CC} > V_{TH(MAX)}$, $I_{SOURCE} = 800 \mu A$	V _{cc} - 1.5			V		
Low (SGM810B-R/S/T)	$V_{CC} = V_{TH(MAX)}, I_{SINK} = 1.2mA$			0.3	V		
Low (SGM810B-M/J)	$V_{CC} = V_{TH(MAX)}, I_{SINK} = 3.2mA$			0.4	V		
High (SGM810B-R/S/T/M/J)	$1.8V < V_{CC} < V_{TH(MIN)}, I_{SOURCE} = 150 \mu A$	0.8 × V _{CC}			V		
nRESET Open-Drain Output Leakage Current (SGM803B)	$V_{CC} > V_{TH}$, reset de-asserted			1	μA		

NOTE:

1. V_{TH} stands for reset voltage threshold and V_{HYS} stands for hysteresis voltage.

TYPICAL PERFORMANCE CHARACTERISTICS

Maximum Transient Duration without Causing a Reset Pulse vs. RESET Comparator Overdrive

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Time (200ms/div)

APPLICATION INFORMATION

Benefits of an Accurate Reset Threshold

In other microprocessor supervisory circuits, tolerances in supply voltages lead to an overall increase in reset tolerance levels due to the deterioration of the microprocessor reset circuit's power supply. The possibility of a malfunction during a power failure is greatly reduced because the SGM803B/SGM809B/ SGM810B series can operate effectively even when there are large degradations of the supply voltages. Another advantage of the SGM803B/SGM809B/ SGM810B series is its very accurate internal voltage reference circuit. These benefits combine to produce an exceptionally reliable voltage monitor circuit.

Interfacing to Microprocessors with Multiple Interrupts

In a number of cases, it is necessary to interface many interrupts from different devices (for example, thermal, altitude, and velocity sensors). The SGM803B/SGM809B/SGM810B can easily be integrated into existing interrupt-handling circuits, as shown in Figure 1, or can be used as a standalone device.

Figure 1. Interfacing to Microprocessors with Multiple Interrupts

Interfacing to Other Devices' Output

The SGM803B/SGM809B/SGM810B series is designed to integrate with as many devices as possible, therefore, has a standard output dependent on V_{CC} . This enables the parts to be used in both 3V and 5V, or any nominal voltage within the minimum and maximum specifications for V_{CC} . This design simplifies interfacing this device to other devices.

Ensuring a Valid Reset Output Down to V_{CC} = 0V

When V_{CC} falls below 1V, the SGM803B/SGM809B nRESET no longer sinks current. A high impedance CMOS logic input connected to nRESET may, therefore, drift to undetermined logic levels. To eliminate this problem, a 100k Ω resistor should be connected from nRESET to ground.

Figure 2. Ensuring a Valid Reset Output Down to Vcc = 0V

Preventing the High Voltage Spike

To prevent the high voltage spike damage or to limit input V_{CC} current, it is recommended to connect a resistor R1 (0 Ω to 1k Ω) in series to V_{CC}, and one capacitor C1 (0.1 μ F to 4.7 μ F) should be connected between V_{CC} pin and GND. The schematic is shown in Figure 3. It must be noted that, the input resistor will affect output driving capability.

Figure 3. Preventing the High Voltage Spike

SGM803B/SGM809B/SGM810B

DETAILED DESCRIPTIONS

Reset Timing

The reset signal is asserted low for the SGM809B and high for the SGM810B when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 150ms after the power supply voltage has risen above the threshold.

NOTE *: Undefined below minimum operating voltage.

Figure 4. Reset Timing Diagram

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (AUGUST 2018) to REV.A

Changed from product preview to production data.....

PACKAGE OUTLINE DIMENSIONS

SOT-23

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.300 0.500		0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
e	0.950	BSC	0.037 BSC		
e1	1.900	BSC	0.075 BSC		
L	0.550	REF	0.022	REF	
L1	0.300	0.300 0.500		0.020	
θ	0° 8°		0°	8°	

PACKAGE OUTLINE DIMENSIONS

SOT-23-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037	BSC	
e1	1.900	BSC	0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-3	7″	9.0	3.20	3.30	1.30	4.0	4.0	2.0	8.0	Q3
SOT-23	7"	9.5	3.15	2.77	1.22	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002